Issue |
A&A
Volume 591, July 2016
|
|
---|---|---|
Article Number | A49 | |
Number of page(s) | 26 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361/201527866 | |
Published online | 10 June 2016 |
Deep MUSE observations in the HDFS
Morpho-kinematics of distant star-forming galaxies down to 108M⊙⋆
1
IRAP, Institut de Recherche en Astrophysique et Planétologie,
CNRS, 14 avenue Édouard
Belin, 31400
Toulouse,
France
e-mail:
thierry.contini@irap.omp.eu
2
Université de Toulouse, UPS-OMP, 31400
Toulouse,
France
3
Aix Marseille Université, CNRS, LAM, Laboratoire d’Astrophysique
de Marseille, UMR 7326, 13388
Marseille,
France
4
IRAP/CNRS, 9
avenue Colonel Roche, 31400
Toulouse,
France
5
Leiden Observatory, Leiden University,
PO Box 9513,
2300 RA
Leiden, The
Netherlands
6
Univ Lyon, Univ Lyon1, Ens de Lyon, CNRS, Centre de Recherche
Astrophysique de Lyon UMR 5574, 69230
Saint-Genis-Laval,
France
7
Leibniz-Institut für Astrophysik Potsdam (AIP),
An der Sternwarte
16, 14482
Potsdam,
Germany
8
ESO, European Southern Observatory, Karl-Schwarzschild Str. 2, 85748
Garching bei Muenchen,
Germany
9
Institute for Computational Cosmology, Durham University,
South Road,
Durham
DH1 3LE,
UK
10
Instituto de Astrofìsica de Canarias (IAC),
38205,
La Laguna, Tenerife,
Spain
11
Departamento de Astrofìsica, Universidad de La
Laguna, 38206, La
Laguna, Tenerife,
Spain
12
ETH Zurich, Institute of Astronomy, Wolfgang-Pauli-Str. 27, 8093
Zurich,
Switzerland
Received: 1 December 2015
Accepted: 20 April 2016
Aims. Whereas the evolution of gas kinematics of massive galaxies is now relatively well established up to redshift z ~ 3, little is known about the kinematics of lower mass (M⋆≤ 1010M⊙) galaxies. We use MUSE, a powerful wide-field, optical integral-field spectrograph (IFS) recently mounted on the VLT, to characterize this galaxy population at intermediate redshift.
Methods. We made use of the deepest MUSE observations performed so far on the Hubble Deep Field South (HDFS). This data cube, resulting from 27 h of integration time, covers a one arcmin2 field of view at an unprecedented depth (with a 1σ emission-line surface brightness limit of 1 × 10-19 erg s-1 cm-2 arcsec-2) and a final spatial resolution of ≈0.7′′. We identified a sample of 28 resolved emission-line galaxies, extending over an area that is at least twice the seeing disk, spread over a redshift interval of 0.2 <z< 1.4. More than half of the galaxies are at z ~ 0.3 − 0.7, which is a redshift range poorly studied so far with IFS kinematics. We used the public HST images and multiband photometry over the HDFS to constrain the stellar mass and star formation rate (SFR) of the galaxies and to perform a morphological analysis using Galfit, providing estimates of the disk inclination, disk scale length, and position angle of the major axis. We derived the resolved ionized gas properties of these galaxies from the MUSE data and model the disk (both in 2D and in 3D with GalPaK3D) to retrieve their intrinsic gas kinematics, including the maximum rotation velocity and velocity dispersion.
Results. We build a sample of resolved emission-line galaxies of much lower stellar mass and SFR (by ~1 − 2 orders of magnitude) than previous IFS surveys. The gas kinematics of most of the spatially resolved MUSE-HDFS galaxies is consistent with disk-like rotation, but about 20% have velocity dispersions that are larger than the rotation velocities and 30% are part of a close pair and/or show clear signs of recent gravitational interactions. These fractions are similar to what has been found in previous IFS surveys of more massive galaxies, indicating that the dynamical state of the ionized gas and the level of gravitational interactions of star-forming galaxies is not a strong function of their stellar mass. In the high-mass regime, the MUSE-HDFS galaxies follow the Tully-Fisher relation defined from previous IFS surveys in a similar redshift range. This scaling relation also extends to lower masses/velocities but with a higher dispersion. We find that 90% of the MUSE-HDFS galaxies with stellar masses below 109.5M⊙ have settled gas disks. The MUSE-HDFS galaxies follow the scaling relations defined in the local Universe between the specific angular momentum and stellar mass. However, we find that intermediate-redshift, star-forming galaxies fill a continuum transition from the spiral to elliptical local scaling relations, according to the dynamical state (i.e., rotation- or dispersion-dominated) of the gas. This indicates that some galaxies may lose their angular momentum and become dispersion-dominated prior to becoming passive.
Key words: galaxies: evolution / galaxies: high-redshift / galaxies: kinematics and dynamics
Based on observations made with ESO/VLT telescopes at the Paranal Observatory under program ID 60.A-9100(C). Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc. under NASA contract NAS 5-26555.
© ESO, 2016
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.