Issue |
A&A
Volume 589, May 2016
|
|
---|---|---|
Article Number | A95 | |
Number of page(s) | 7 | |
Section | Numerical methods and codes | |
DOI | https://doi.org/10.1051/0004-6361/201425181 | |
Published online | 19 April 2016 |
Merged or monolithic? Using machine-learning to reconstruct the dynamical history of simulated star clusters
Department of Astronomy & Center for Galaxy Evolution
ResearchYonsei University,
120-749
Seoul,
Republic of Korea
e-mail:
mario.pasquato@gmail.com
Received: 20 October 2014
Accepted: 2 February 2016
Context. Machine-learning (ML) solves problems by learning patterns from data with limited or no human guidance. In astronomy, ML is mainly applied to large observational datasets, e.g. for morphological galaxy classification.
Aims. We apply ML to gravitational N-body simulations of star clusters that are either formed by merging two progenitors or evolved in isolation, planning to later identify globular clusters (GCs) that may have a history of merging from observational data.
Methods. We create mock-observations from simulated GCs, from which we measure a set of parameters (also called features in the machine-learning field). After carrying out dimensionality reduction on the feature space, the resulting datapoints are fed in to various classification algorithms. Using repeated random subsampling validation, we check whether the groups identified by the algorithms correspond to the underlying physical distinction between mergers and monolithically evolved simulations.
Results. The three algorithms we considered (C5.0 trees, k-nearest neighbour, and support-vector machines) all achieve a test misclassification rate of about 10% without parameter tuning, with support-vector machines slightly outperforming the others. The first principal component of feature space correlates with cluster concentration. If we exclude it from the regression, the performance of the algorithms is only slightly reduced.
Key words: globular clusters: general / Galaxy: evolution / methods: statistical / methods: numerical
© ESO, 2016
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.