Issue |
A&A
Volume 587, March 2016
|
|
---|---|---|
Article Number | A124 | |
Number of page(s) | 15 | |
Section | Galactic structure, stellar clusters and populations | |
DOI | https://doi.org/10.1051/0004-6361/201527413 | |
Published online | 01 March 2016 |
Metal-poor stars towards the Galactic bulge: A population potpourri⋆,⋆⋆
1
Landessternwarte, Zentrum für Astronomie der Universität
Heidelberg, Königstuhl
12, 69117
Heidelberg,
Germany
e-mail: akoch@lsw.uni-heidelberg.de;
andy@obs.carnegiescience.edu;
gwp@obs.carnegiescience.edu; ian@obs.carnegiescience.edu
2
Carnegie Observatories, 813 Santa Barbara St., Pasadena, CA
91101,
USA
Received: 21 September 2015
Accepted: 30 October 2015
We present a comprehensive chemical abundance analysis of five red giants and two horizontal branch (HB) stars towards the southern edge of the Galactic bulge, at (l, b) ~ (0°,−11°). Based on high-resolution spectroscopy obtained with the Magellan/MIKE spectrograph, we derived up to 23 chemical element abundances and identify a mixed bag of stars, representing various populations in the central regions of the Galaxy. Although cosmological simulations predict that the inner Galaxy was host to the first stars in the Universe, we see no chemical evidence of the ensuing massive supernova explosions: all of our targets exhibit halo-like, solar [Sc/Fe] ratios, which is in contrast to the low values predicted from Population III nucleosynthesis. One of the targets is a CEMP-s star at [Fe/H] = −2.52 dex, and another target is a moderately metal-poor ([Fe/H] = −1.53 dex) CH star with strong enrichment in s-process elements (e.g., [Ba/Fe] = 1.35). These individuals provide the first contenders of these classes of stars towards the bulge. Four of the carbon-normal stars exhibit abundance patterns reminiscent of halo star across a metallicity range spanning −2.0 to −2.6 dex, i.e., enhanced α-elements and solar Fe-peak and neutron-capture elements, and the remaining one is a regular metal-rich bulge giant. The position, distance, and radial velocity of one of the metal-poor HB stars coincides with simulations of the old trailing arm of the disrupted Sagittarius dwarf galaxy. While their highly uncertain proper motions prohibit a clear kinematic separation, the stars’ chemical abundances and distances suggest that these metal-poor candidates, albeit located towards the bulge, are not of the bulge, but rather inner halo stars on orbits that make them pass through the central regions. Thus, we caution similar claims of detections of metal-poor stars as true habitants of the bulge.
Key words: stars: abundances / stars: carbon / stars: Population II / Galaxy: abundances / Galaxy: bulge / Galaxy: halo
This paper includes data gathered with the 6.5 meter Magellan Telescopes located at Las Campanas Observatory, Chile.
Full Tables 2 and 3 are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/587/A124
© ESO, 2016
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.