Issue |
A&A
Volume 587, March 2016
|
|
---|---|---|
Article Number | A128 | |
Number of page(s) | 14 | |
Section | Planets and planetary systems | |
DOI | https://doi.org/10.1051/0004-6361/201526565 | |
Published online | 02 March 2016 |
Comet formation in collapsing pebble clouds
What cometary bulk density implies for the cloud mass and dust-to-ice ratio
1
Max-Planck Institute for Solar System Research,
Justus-von-Liebig Weg 3,
37077
Göttingen,
Germany
e-mail:
lorek@mps.mpg.de
2
Institut für Geophysik und extraterrestrische Physik, Technische
Universität Braunschweig, Mendelssohnstr. 3, 38106
Braunschweig,
Germany
Received: 20 May 2015
Accepted: 13 January 2016
Context. Comets are remnants of the icy planetesimals that formed beyond the ice line in the solar nebula. Growing from μm-sized dust and ice particles to km-sized objects is, however, difficult because of growth barriers and time scale constraints. The gravitational collapse of pebble clouds that formed through the streaming instability may provide a suitable mechanism for comet formation.
Aims. We study the collisional compression of silica, ice, and silica/ice-mixed pebbles during gravitational collapse of pebble clouds. Using the initial volume-filling factor and the dust-to-ice ratio of the pebbles as free parameters, we constrain the dust-to-ice mass ratio of the formed comet and the resulting volume-filling factor of the pebbles, depending on the cloud mass.
Methods. We use the representative particle approach, which is a Monte Carlo method, to follow cloud collapse and collisional evolution of an ensemble of ice, silica, and silica/ice-mixed pebbles. Therefore, we developed a collision model which takes the various collision properties of dust and ice into account. We study pebbles with a compact size of 1 cm and vary the initial volume-filling factors, φ0, ranging from 0.001 to 0.4. We consider mixed pebbles as having dust-to-ice ratios between 0.5 and 10. We investigate four typical cloud masses, M, between 2.6 × 1014 (very low) and 2.6 × 1023 g (high).
Results. Except for the very low-mass cloud (M = 2.6 × 1014 g), silica pebbles are always compressed during the collapse and attain volume-filling factors in the range from ⟨ φ ⟩ V ≈ 0.22 to 0.43, regardless of φ0. Ice pebbles experience no significant compression in very low-mass clouds. They are compressed to values in the range ⟨ φ ⟩ V ≈ 0.11 to 0.17 in low- and intermediate-mass clouds (M = 2.6 × 1017−2.6 × 1020 g); in high-mass clouds (M = 2.6 × 1023 g), ice pebbles end up with ⟨ φ ⟩ V ≈ 0.23. Mixed pebbles obtain filling factors in between the values for pure ice and pure silica. We find that the observed cometary density of ~0.5 g cm-3 can only be explained by either intermediate- or high-mass clouds, regardless of φ0, and also by either very low- or low-mass clouds for initially compact pebbles. In any case, the dust-to-ice ratio must be in the range of between 3 ≲ ξ ≲ 9 to match the observed bulk properties of comet nuclei.
Key words: comets: general / methods: numerical
© ESO, 2016
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.