Issue |
A&A
Volume 587, March 2016
|
|
---|---|---|
Article Number | A75 | |
Number of page(s) | 17 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361/201526532 | |
Published online | 19 February 2016 |
Proper motions of embedded protostellar jets in Serpens⋆
1
Nordic Optical Telescope, Rambla José Ana Fernández Pérez, 7,
38711
Breña Baja,
Spain
e-mail:
amanda@not.iac.es
2
Tartu Observatory, 61602
Tõravere,
Estonia
e-mail:
tiina@obs.ee
3
Institute of Physics, University of Tartu,
Ravila 14c, 50411
Tartu,
Estonia
4 SOFIA Science Center, NASA Ames Research Center, 94035
Moffett Field, USA
e-mail:
hzinnecker@sofia.usra.edu
5
Deutsches SOFIA Institut (DSI), University of
Stuttgart, 70569
Stuttgart,
Germany
6
Institute of Astronomy, University of Latvia,
Raina bulv. 19, Riga,
LV
1586,
Latvia
7
School of Maths & Physics, University of
Tasmania, 7001
Hobart,
Australia
e-mail:
efoi@utas.edu.au
8
Niels Bohr Institute, University of Copenhagen,
Juliane Maries Vej 30,
2100
Copenhagen,
Denmark
Received: 14 May 2015
Accepted: 18 December 2015
Aims. We determine the proper motion of protostellar jets around Class 0 and Class I sources in an active star forming region in Serpens.
Methods. Multi-epoch deep images in the 2.122 μm line of molecular hydrogen, v = 1−0 S(1), obtained with the near-infrared instrument NOTCam on a timescale of 10 years, are used to determine the proper motion of knots and jets. K-band spectroscopy of the brighter knots is used to supply radial velocities, estimate extinction, excitation temperature, and H2 column densities towards these knots.
Results. We measure the proper motion of 31 knots on different timescales (2, 4, 6, 8, and 10 years). The typical tangential velocity is around 50 km s-1 for the 10-year baseline, but for shorter timescales, a maximum tangential velocity up to 300 km s-1 is found for a few knots. Based on morphology, velocity information, and the locations of known protostars, we argue for the existence of at least three partly overlapping and deeply embedded flows, one Class 0 flow and two Class I flows. The multi-epoch proper motion results indicate time-variable velocities of the knots, for the first time directly measured for a Class 0 jet. We find in general higher velocities for the Class 0 jet than for the two Class I jets. While the bolometric luminosites of the three driving sources are about equal, the derived mass flow rate Ṁout is two orders of magnitude higher in the Class 0 flow than in the two Class I flows.
Key words: stars: formation / ISM: jets and outflows / Herbig-Haro objects / ISM: kinematics and dynamics
© ESO, 2016
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.