Issue |
A&A
Volume 585, January 2016
|
|
---|---|---|
Article Number | A152 | |
Number of page(s) | 15 | |
Section | Stellar atmospheres | |
DOI | https://doi.org/10.1051/0004-6361/201527429 | |
Published online | 14 January 2016 |
Planet signatures and effect of the chemical evolution of the Galactic thin-disk stars
1 Universidade de São Paulo, IAG, Departamento de Astronomia, Rua do Mãtao 1226, São Paulo, 05509-900 SP, Brasil
e-mail: lspina@usp.br
2 Department of Astronomy, University of Texas at Austin; 2515 Speedway, Stop C1400, Austin, TX 78712-1205, USA
Received: 23 September 2015
Accepted: 19 October 2015
Context. Studies based on high-precision abundance determinations revealed that chemical patterns of solar twins are characterised by the correlation between the differential abundances relative to the Sun and the condensation temperatures (Tc) of the elements. It has been suggested that the origin of this relation is related to the chemical evolution of the Galactic disk, but other processes, associated with the presence of planets around stars, might also be involved.
Aims. We analyse HIRES spectra of 14 solar twins and the Sun to provide new insights on the mechanisms that can determine the relation between [X/H] and Tc.
Methods. Our spectroscopic analysis produced stellar parameters (Teff, log g, [Fe/H], and ξ), ages, masses, and abundances of 22 elements (C, O, Na, Mg, Al, Si, S, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sr, Y, and Ba). We used these determinations to place new constraints on the chemical evolution of the Galactic disk and to verify whether this process alone can explain the different [X/H]-Tc slopes observed so far.
Results. We confirm that the [X/Fe] ratios of all the species correlate with age. The slopes of these relations allow us to describe the effect that the chemical evolution of the Galactic disk has on the chemical patterns of the solar twins. After subtracting the chemical evolution effect, we find that the unevolved [X/H]-Tc slope values do not depend on the stellar ages anymore. However, the wide diversity among these [X/H]-Tc slopes, covering a range of ± 4 × 10-5 dex K-1, indicates that processes in addition to the chemical evolution may affect the [X/H]-Tc slopes.
Conclusions. The wide range of unevolved [X/H]-Tc slope values spanned at all ages by our sample could reflect the wide diversity among exo-planetary systems observed so far and the variety of fates that the matter in circumstellar disks can experience.
Key words: stars: abundances / stars: fundamental parameters / stars: solar-type / planetary systems / Galaxy: disk / Galaxy: evolution
© ESO, 2016
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.