Issue |
A&A
Volume 585, January 2016
|
|
---|---|---|
Article Number | A105 | |
Number of page(s) | 16 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361/201526658 | |
Published online | 05 January 2016 |
Physical conditions in the central molecular zone inferred by H3+
1
LERMA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne
Université,
UPMC Paris 06,
92190
Meudon,
France
e-mail:
Franck.LePetit@obspm.fr
2
Université Bordeaux, LAB, UMR 5804, 33270
Floirac,
France
3
CNRS, LAB, UMR 5804, 33270
Floirac,
France
4
Université Paris-Diderot Paris 07, 75013
Paris,
France
Received: 2 June 2015
Accepted: 18 September 2015
Context. The H3+ molecule has been detected in many lines of sight within the central molecular zone (CMZ) with exceptionally large column densities and unusual excitation properties compared to diffuse local clouds. The detection of the (3, 3) metastable level has been suggested to be the signature of warm and diffuse gas in the CMZ.
Aims. We aim to determine the physical conditions and processes in the CMZ that explain the ubiquitous properties of H3+ in this medium and to constrain the value of the cosmic-ray ionization rate.
Methods. We use the Meudon photodissociation region (PDR) code in which H3+ excitation has been implemented. We re-examine the relationship between the column density of H3+ and the cosmic-ray ionization rate, ζ, up to large values of ζ in the frame of this full chemical model. We study the impact of the various mechanisms that can excite H3+ in its metastable state. We produce grids of PDR models exploring different parameters (ζ, size of clouds, metallicity) and infer the physical conditions that best match the observations toward ten lines of sight in the CMZ. For one of them, Herschel observations of HF, OH+, H2O+, and H3O+ can be used as additional constraints. We check that the results found for H3+ also account for the observations of these molecules.
Results. We find that the linear relationship between N(H3+) and ζ only holds up to a certain value of the cosmic-ray ionization rate, which depends on the proton density. A value ζ ~ 1−11 × 10-14 s-1 explains both the large observed H3+ column density and its excitation in the metastable level (3, 3). This ζ value agrees with that derived from synchrotron emission and Fe Kα line. It also reproduces N(OH+), N(H2O+) and N(H3O+) detected toward Sgr B2(N). We confirm that the CMZ probed by H3+ is diffuse, nH≲ 100 cm-3 and warm, T ~ 212−505 K. This warm medium is due to cosmic-ray heating. We also find that the diffuse component probed by H3+ must fill a large fraction of the CMZ. Finally, we suggest the warm gas in the CMZ enables efficient H2 formation via chemisorption sites as in PDRs. This contributes to enhance the abundance of H3+ in this high cosmic-ray flux environment.
Key words: astrochemistry / ISM: molecules / cosmic rays / ISM: clouds / Galaxy: nucleus
© ESO, 2016
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.