Issue |
A&A
Volume 584, December 2015
|
|
---|---|---|
Article Number | A23 | |
Number of page(s) | 6 | |
Section | Planets and planetary systems | |
DOI | https://doi.org/10.1051/0004-6361/201526456 | |
Published online | 13 November 2015 |
Disk-integrated brightness of a Lommel-Seeliger scattering ellipsoidal asteroid
1 Department of Physics, University of Helsinki, Gustaf Hällströmin katu 2a, PO Box 64, 00014 U. Helsinki, Finland
e-mail: Karri.Muinonen@helsinki.fi
2 Finnish Geospatial Research Institute FGI, Geodeetinrinne 2, 02430 Masala, Finland
Received: 3 May 2015
Accepted: 8 September 2015
Context. The scattering of light by an asteroid’s surface depends on the properties of its particles, volume density, and roughness. It is described by the reflection coefficient which, upon integration over the illuminated and observed part of the surface, yields the disk-integrated photometric brightness of the asteroid. The Lommel-Seeliger reflection coefficient is applicable to dark, low-albedo C-class asteroids, with prospects for moderate-albedo S-class and M-class asteroids.
Aims. We calculate the disk-integrated brightness for an ellipsoidal asteroid with a Lommel-Seeliger reflection coefficient (LS ellipsoid). Furthermore, we calculate the photocenter for the LS ellipsoid, that is, the distance of the center of light from the barycenter.
Methods. Because of their analytical nature, the closed-form expressions can be readily utilized in numerical simulations.
Results. We show lightcurves and photocenter variations for realistic examples of ellipsoidal shapes for a number of pole orientations. The results highlight the reciprocity principle of the radiative-transfer theory and suggest a nontrivial dependence of the photocenter on the pole orientation and viewing geometry.
Conclusions. Finally, we outline a number of applications and future prospects.
Key words: minor planets, asteroids: general / radiative transfer / scattering / methods: analytical / techniques: photometric / comets: general
© ESO, 2015
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.