Issue |
A&A
Volume 583, November 2015
|
|
---|---|---|
Article Number | A108 | |
Number of page(s) | 5 | |
Section | Stellar structure and evolution | |
DOI | https://doi.org/10.1051/0004-6361/201526524 | |
Published online | 02 November 2015 |
Research Note
Orbital period decay of compact black hole X-ray binaries: the influence of circumbinary disks?
1
School of Physics and Electrical Information, Shangqiu Normal
University, 476000
Shangqiu, PR
China
e-mail:
chenwc@nju.edu.cn
2
Department of Astronomy, Nanjing University,
210093
Nanjing, PR
China
3
Key Laboratory of Modern Astronomy and Astrophysics (Nanjing
University), Ministry of Education,
210093
Nanjing, PR
China
Received: 13 May 2015
Accepted: 19 August 2015
Context. Recently, compact black hole X-ray binaries XTE J 1118+480 and A0620-00 have been reported to be experiencing a fast orbital period decay, which is two orders of magnitude higher than expected with gravitational wave radiation. Magnetic braking of an Ap/Bp star has been suggested to account for the period change when the surface magnetic field of the companion star Bs ≳ 104 G. However, our calculation indicates that anomalous magnetic braking cannot significantly contribute to the large orbital period decay rates observed in these two sources even if Bs ≳ 104 G.
Aims. Observations have provided evidence that circumbinary disks around two compact black hole X-ray binaries may exist. Our analysis shows that, for some reasonable parameters, tidal torque between the circumbinary disk and the binary can efficiently extract the orbital angular momentum from the binary, and result in a large orbital period change rate.
Methods. Based on the circumbinary disk model, we simulate the evolution of XTE J 1118+480 via a stellar evolution code.
Results. Our computations are approximatively in agreement with the observed data (the masses of two components, donor star radius, orbital period, and orbital period derivative).
Conclusions. The mass transfer rate and circumbinary disk mass are obviously far greater than the inferred values from observations. Therefore, it seems that the circumbinary disk is unlikely to be the main cause of the rapid orbital decay observed in some compact black hole X-ray binaries.
Key words: stars: black holes / stars: evolution / stars: mass-loss / X-rays: binaries
© ESO, 2015
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.