Issue |
A&A
Volume 583, November 2015
|
|
---|---|---|
Article Number | A97 | |
Number of page(s) | 8 | |
Section | Numerical methods and codes | |
DOI | https://doi.org/10.1051/0004-6361/201526426 | |
Published online | 02 November 2015 |
Simulating charge transport to understand the spectral response of Swept Charge Devices
1 Manipal Centre for Natural Sciences (MCNS), Manipal University, Manipal, Karnataka 576104, India
e-mail: athray@gmail.com
2 Indian Institute of Astrophysics (IIA), 560034 Koramangala, Bangalore, India
3 ISRO Satellite Centre, 560017 Bangalore, India
4 Centre for Electronic Imaging, The Open University, Milton Keynes MK7 6AA, UK
Received: 28 April 2015
Accepted: 27 August 2015
Context. Swept Charge Devices (SCD) are novel X-ray detectors optimized for improved spectral performance without any demand for active cooling. The Chandrayaan-1 X-ray Spectrometer (C1XS) experiment onboard the Chandrayaan-1 spacecraft used an array of SCDs to map the global surface elemental abundances on the Moon using the X-ray fluorescence (XRF) technique. The successful demonstration of SCDs in C1XS spurred an enhanced version of the spectrometer on Chandrayaan-2 using the next-generation SCD sensors.
Aims. The objective of this paper is to demonstrate validation of a physical model developed to simulate X-ray photon interaction and charge transportation in a SCD. The model helps to understand and identify the origin of individual components that collectively contribute to the energy-dependent spectral response of the SCD. Furthermore, the model provides completeness to various calibration tasks, such as generating spectral matrices (RMFs – redistribution matrix files), estimating efficiency, optimizing event selection logic, and maximizing event recovery to improve photon-collection efficiency in SCDs.
Methods. Charge generation and transportation in the SCD at different layers related to channel stops, field zones, and field-free zones due to photon interaction were computed using standard drift and diffusion equations. Charge collected in the buried channel due to photon interaction in different volumes of the detector was computed by assuming a Gaussian radial profile of the charge cloud. The collected charge was processed further to simulate both diagonal clocking read-out, which is a novel design exclusive for SCDs, and event selection logic to construct the energy spectrum.
Results. We compare simulation results of the SCD CCD54 with measurements obtained during the ground calibration of C1XS and clearly demonstrate that our model reproduces all the major spectral features seen in calibration data. We also describe our understanding of interactions at different layers of SCD that contribute to the observed spectrum. Using simulation results, we identify the origin of different spectral features and quantify their contributions.
Key words: X-rays: general / instrumentation: detectors / methods: numerical
© ESO, 2015
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.