Issue |
A&A
Volume 582, October 2015
|
|
---|---|---|
Article Number | A122 | |
Number of page(s) | 21 | |
Section | Galactic structure, stellar clusters and populations | |
DOI | https://doi.org/10.1051/0004-6361/201526258 | |
Published online | 22 October 2015 |
The Gaia-ESO Survey: characterisation of the [α/Fe] sequences in the Milky Way discs⋆
1
Leibniz-Institut für Astrophysik Potsdam (AIP),
An der Sternwarte 16,
14482
Potsdam,
Germany
2
Johns Hopkins University, Homewood Campus, 3400 N Charles Street,
Baltimore, MD
21218,
USA
3
Institute of Astronomy, University of Cambridge,
Madingley Road, Cambridge
CB3 0HA,
UK
4
Laboratoire Lagrange (UMR 7293), Université de Nice Sophia
Antipolis, CNRS, Observatoire de la Côte d’Azur, CS 34229, 06304
Nice Cedex 4,
France
5
Instituto de Astrofísica e Ciência do Espaço, Universidade do
Porto, CAUP, Rua das
Estrelas, 4150-762
Porto,
Portugal
6
Department of Physics and Astronomy, Uppsala
University, Box
516, 751 20
Uppsala,
Sweden
7
Observatoire Astronomique de Strasbourg, Université de Strasbourg,
CNRS UMR 7550, 11 rue de l’Université, 67000
Strasbourg,
France
8
Lund Observatory, Department of Astronomy and Theoretical
Physics, Box 43,
221 00
Lund,
Sweden
9
Institute of Theoretical Physics and Astronomy, Vilnius
University, A. Goštauto
12, 01108
Vilnius,
Lithuania
10
INAF–Padova Observatory, Vicolo dell’Osservatorio 5, 35122
Padova,
Italy
11 Instituto de Física y Astronomiía, Universidad de
Valparaíso, Chile
12
European Southern Observatory, Alonso de Cordova 3107 Vitacura, Santiago de Chile,
Chile
13
INAF–Osservatorio Astronomico di Palermo, Piazza del Parlamento
1, 90134
Palermo,
Italy
14
Moscow MV Lomonosov State University, Sternberg Astronomical
Institute, 119992
Moscow,
Russia
15
Astrophysics Research Institute, Liverpool John Moores
University, 146 Brownlow
Hill, Liverpool
L3 5RF,
UK
16
INAF–Osservatorio Astrofisico di Arcetri, Largo E. Fermi
5, 50125
Florence,
Italy
17
INAF–Osservatorio Astronomico di Bologna, via Ranzani
1, 40127
Bologna,
Italy
18
ASI Science Data Center, via del Politecnico SNC,
00133
Roma,
Italy
Received: 3 April 2015
Accepted: 25 July 2015
Context. High-resolution spectroscopic surveys of stars indicate that the Milky Way thin and thick discs follow different paths in the chemical space defined by [α/ Fe] vs. [Fe/H], possibly suggesting different formation mechanisms for each of these structures.
Aims. We investigate, using the Gaia-ESO Survey internal Data-Release 2, the properties of the double sequence of the Milky Way discs, which are defined chemically as the high-α and low-α populations. We discuss their compatibility with discs defined by other means, such as metallicity, kinematics, or positions.
Methods. This investigation uses two different approaches: in velocity space, for stars located in the extended solar neighbourhood; and, in chemical space, for stars at different ranges of Galactocentric radii and heights from the Galactic mid-plane. The separation we find in velocity space allows us to investigate, using a novel approach, the extent of metallicity of each of the two chemical sequences, without making any assumption about the shape of their metallicity distribution functions. Then, using the separation in chemical space, adopting the magnesium abundance as a tracer of the α-elements, we characterise the spatial variation of the slopes of the [α/ Fe] − [Fe/H] sequences for the thick and thin discs and the way in which the relative proportions of the two discs change across the Galaxy.
Results. We find that the thick disc, defined as the stars tracing the high-α sequence, extends up to super-solar metallicities ([Fe/H] ≈ +0.2 dex), and the thin disc, defined as the stars tracing the low-α sequence, extends at least down to [Fe/H] ≈ −0.8 dex, with hints pointing towards even lower values. Radial and vertical gradients in α-abundances are found for the thin disc, with mild spatial variations in its [α/ Fe] − [Fe/H] paths, whereas for the thick disc we do not detect any spatial variations of this kind. This is in agreement with results obtained recently from other high-resolution spectroscopic surveys.
Conclusions. The small variations in the spatial [α/ Fe] − [Fe/H] paths of the thin disc do not allow us to distinguish between formation models of this structure. On the other hand, the lack of radial gradients and [α/ Fe] − [Fe/H] variations for the thick disc indicate that the mechanism responsible for the mixing of metals in the young Galaxy (e.g. radial stellar migration or turbulent gaseous disc) was more efficient before the (present) thin disc started forming.
Key words: Galaxy: abundances / Galaxy: stellar content / Galaxy: evolution / Galaxy: kinematics and dynamics / Galaxy: disk / stars: abundances
© ESO, 2015
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.