Issue |
A&A
Volume 581, September 2015
|
|
---|---|---|
Article Number | A36 | |
Number of page(s) | 15 | |
Section | Stellar structure and evolution | |
DOI | https://doi.org/10.1051/0004-6361/201526035 | |
Published online | 28 August 2015 |
The flux-weighted gravity-luminosity relationship of blue supergiant stars as a constraint for stellar evolution
1 Geneva Observatory, University of Geneva, Maillettes 51, 1290 Sauverny, Switzerland
e-mail: georges.meynet@unige.ch
2 Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822, USA
3 University Observatory Munich, Scheinerstr. 1, 81679 Munich, Germany
4 Astrophysics, Lennard-Jones Laboratories, EPSAM, Keele University, Staffordshire ST5 5BG, UK
Received: 6 March 2015
Accepted: 3 May 2015
Context. The flux-weighted gravity-luminosity relationship (FGLR) of blue supergiant stars (BSG) links their absolute magnitude to the spectroscopically determined flux-weighted gravity . BSG are the brightest stars in the universe at visual light and the application of the FGLR has become a powerful tool for determining extragalactic distances.
Aims. Observationally, the FGLR is a tight relationship with only small scatter. It is, therefore, ideal for using as a constraint for stellar evolution models. The goal of this work is to investigate whether stellar evolution can reproduce the observed FGLR and to develop an improved foundation for the FGLR as an extragalactic distance indicator.
Methods. We used different grids of stellar models for initial masses between 9 and 40 M⊙ and for metallicities between Z = 0.002 and 0.014, with and without rotation, which were computed with various mass loss rates during the red supergiant phase. For each of these models, we discuss the details of post-main sequence evolution and construct theoretical FGLRs by means of population synthesis models that we then compare with the observed FGLR.
Results. In general, the stellar evolution model FGLRs agree reasonably well with the observed one. There are, however, differences between the models, in particular with regard to the shape and width (scatter) in the flux-weighted gravity-luminosity plane. The best agreement is obtained with models that include the effects of rotation and assume that the large majority, if not all, of the observed BSG evolve toward the red supergiant phase and that only a few are evolving back from this stage. The effects of metallicity on the shape and scatter of the FGLR are small.
Conclusions. The shape, scatter, and metallicity dependence of the observed FGLR are explained well by stellar evolution models. This provides a solid theoretical foundation for using this relationship as a robust extragalactic distance indicator.
Key words: supergiants / stars: rotation / galaxies: distances and redshifts
© ESO, 2015
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.