Issue |
A&A
Volume 580, August 2015
|
|
---|---|---|
Article Number | A30 | |
Number of page(s) | 7 | |
Section | Planets and planetary systems | |
DOI | https://doi.org/10.1051/0004-6361/201525963 | |
Published online | 23 July 2015 |
Research Note
Elemental ratios in stars vs planets⋆
1
Center for Space and Habitability, Universität Bern,
3012
Bern,
Switzerland
e-mail:
amaury.thiabaud@csh.unibe.ch
2
Physikalisches Institut, Universität Bern,
3012
Bern,
Switzerland
3
Institut für Geologie, Universität Bern,
3012
Bern,
Switzerland
4
On leave from CNRS, Observatoire de Besançon,
25000
Besançon,
France
Received: 25 February 2015
Accepted: 21 June 2015
Context. The chemical composition of planets is an important constraint for planet formation and subsequent differentiation. While theoretical studies try to derive the compositions of planets from planet formation models in order to link the composition and formation process of planets, other studies assume that the elemental ratios in the formed planet and in the host star are the same.
Aims. Using a chemical model combined with a planet formation model, we aim to link the composition of stars with solar mass and luminosity with the composition of the hosted planets. For this purpose, we study the three most important elemental ratios that control the internal structure of a planet: Fe/Si, Mg/Si, and C/O.
Methods. A set of 18 different observed stellar compositions was used to cover a wide range of these elemental ratios. The Gibbs energy minimization assumption was used to derive the composition of planets, taking stellar abundances as proxies for nebular abundances, and to generate planets in a self-consistent planet formation model. We computed the elemental ratios Fe/Si, Mg/Si and C/O in three types of planets (rocky, icy, and giant planets) formed in different protoplanetary discs, and compared them to stellar abundances.
Results. We show that the elemental ratios Mg/Si and Fe/Si in planets are essentially identical to those in the star. Some deviations are shown for planets that formed in specific regions of the disc, but the relationship remains valid within the ranges encompassed in our study. The C/O ratio shows only a very weak dependence on the stellar value.
Key words: planets and satellites: composition / planets and satellites: formation / planets and satellites: interiors
Appendix A is available in electronic form at http://www.aanda.org
© ESO, 2015
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.