Issue |
A&A
Volume 578, June 2015
|
|
---|---|---|
Article Number | A69 | |
Number of page(s) | 11 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361/201425330 | |
Published online | 08 June 2015 |
Linking radio and gamma-ray emission in Ap Librae
LUTH, Observatoire de Paris, CNRS, Université Paris Diderot, 5 place Jules Janssen, 92190 Meudon, France
e-mail: olivier.hervet@obspm.fr
Received: 13 November 2014
Accepted: 3 March 2015
Ap Lib is one of the rare low-synchrotron-peaked blazars detected so far at TeV energies. This type of source is not properly modelled by standard one-zone leptonic synchrotron self-Compton (SSC) emission scenarios. The aim of this paper is to study the relevance of additional components that should naturally occur in an SSC scenario for a better understanding of the emission mechanisms, especially at very high energies (VHE). We use simultaneous data from a multi-wavelength campaign of the Planck, Swift-UVOT, and Swift-XRT telescopes carried out in February 2010, as well as quasi-simultaneous data of WISE, Fermi, and HESS taken in 2010. The multi-lambda emission of Ap Lib is modelled by a blob-in-jet SSC scenario including the contribution of the base of the VLBI-extended jet, the radiative blob-jet interaction, the accretion disk, and its associated external photon field. We show that signatures of a strong parsec-scale jet and of an accretion disk emission are present in the spectral energy distribution. We can link the observational VLBI jet features from MOJAVE to parameters expected for a VHE-emitting blob accelerated near the jet base. The VHE emission appears to be dominated by the inverse-Compton effect of the blob relativistic electrons interacting with the jet synchrotron radiation. In this scenario, Ap Lib appears as an intermediate source between BL Lac objects and flat-spectrum radio quasars. Ap Lib could be a bright representative of a specific class of blazars, in which the parsec-scale jet luminosity is no more negligible compared to the blob and contributes to the high-energy emission through inverse-Compton processes.
Key words: radiation mechanisms: non-thermal / galaxies: active / galaxies: jets / BL Lacertae objects: individual: Ap Librae
© ESO, 2015
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.