Issue |
A&A
Volume 575, March 2015
|
|
---|---|---|
Article Number | A50 | |
Number of page(s) | 17 | |
Section | Stellar atmospheres | |
DOI | https://doi.org/10.1051/0004-6361/201425212 | |
Published online | 20 February 2015 |
What causes the large extensions of red supergiant atmospheres?
Comparisons of interferometric observations with 1D hydrostatic, 3D convection, and 1D pulsating model atmospheres⋆,⋆⋆
1 Dpt. Astronomia i Astrofísica, Universitat de ValènciaC/Dr. Moliner 50 46100 Burjassot Spain
e-mail:
belen.arroyo@uv.es
2 ESO, Karl-Schwarzschild-St. 2, 85748 Garching bei München, Germany
3 Laboratoire Lagrange, UMR 7293, Université de Nice Sophia-Antipolis, CNRS, Observatoire de la Côte d’Azur, BP 4229, 06304 Nice Cedex 4, France
4 Zentrum für Astronomie der Universität Heidelberg (ZAH), Institut für Theoretische Astrophysik, Albert-Ueberle-Str. 2, 69120 Heidelberg, Germany
5 Sydney Institute for Astronomy, School of Physics, University of Sydney, Sydney NSW 2006, Australia
6 Department of Physics and Astronomy at Uppsala University, Regementsvägen 1, Box 516, 75120 Uppsala, Sweden
7 Donostia International Physics Center, Paseo de Manuel Lardizabal 4, 20018 Donostia-San Sebastián, Spain
8 Hamburger Sternwarte, Gojenbergsweg 112, 21029 Hamburg, Germany
9 Research School of Astronomy and Astrophysics, Australian National University, Cotter Road, Weston Creek ACT 2611, Australia
Received: 24 October 2014
Accepted: 23 December 2014
Aims. This research has two main goals. First, we present the atmospheric structure and the fundamental parameters of three red supergiants (RSGs), increasing the sample of RSGs observed by near-infrared spectro-interferometry. Additionally, we test possible mechanisms that may explain the large observed atmospheric extensions of RSGs.
Methods. We carried out spectro-interferometric observations of the RSGs V602 Car, HD 95687, and HD 183589 in the near-infrared K-band (1.92−2.47 μm) with the VLTI/AMBER instrument at medium spectral resolution (R ~ 1500). To categorize and comprehend the extended atmospheres, we compared our observational results to predictions by available hydrostatic PHOENIX, available 3D convection, and new 1D self-excited pulsation models of RSGs.
Results. Our near-infrared flux spectra of V602 Car, HD 95687, and HD 183589 are well reproduced by the PHOENIX model atmospheres. The continuum visibility values are consistent with a limb-darkened disk as predicted by the PHOENIX models, allowing us to determine the angular diameter and the fundamental parameters of our sources. Nonetheless, in the case of V602 Car and HD 95686, the PHOENIX model visibilities do not predict the large observed extensions of molecular layers, most remarkably in the CO bands. Likewise, the 3D convection models and the 1D pulsation models with typical parameters of RSGs lead to compact atmospheric structures as well, which are similar to the structure of the hydrostatic PHOENIX models. They can also not explain the observed decreases in the visibilities and thus the large atmospheric molecular extensions. The full sample of our RSGs indicates increasing observed atmospheric extensions with increasing luminosity and decreasing surface gravity, and no correlation with effective temperature or variability amplitude.
Conclusions. The location of our RSG sources in the Hertzsprung-Russell diagram is confirmed to be consistent with the red limits of recent evolutionary tracks. The observed extensions of the atmospheric layers of our sample of RSGs are comparable to those of Mira stars. This phenomenon is not predicted by any of the considered model atmospheres including available 3D convection and new 1D pulsation models of RSGs. This confirms that neither convection nor pulsation alone can levitate the molecular atmospheres of RSGs. Our observed correlation of atmospheric extension with luminosity supports a scenario of radiative acceleration on Doppler-shifted molecular lines.
Key words: stars: fundamental parameters / stars: individual: V602 Car / stars: individual: HD 95687 / stars: atmospheres / stars: individual: HD 183589 / supergiants
Based on observations made with the VLT Interferometer (VLTI) at Paranal Observatory under programme ID 091.D-0275.
Figures 2–6 are available in electronic form at http://www.aanda.org
© ESO, 2015
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.