Issue |
A&A
Volume 575, March 2015
|
|
---|---|---|
Article Number | A70 | |
Number of page(s) | 20 | |
Section | Stellar atmospheres | |
DOI | https://doi.org/10.1051/0004-6361/201425202 | |
Published online | 25 February 2015 |
The VLT-FLAMES Tarantula Survey
XIX. B-type supergiants: Atmospheric parameters and nitrogen abundances to investigate the role of binarity and the width of the main sequence⋆
1
Astrophysics Research Centre, School of Mathematics and Physics, Queen’s
University Belfast,
Belfast
BT7 1NN,
UK
2
UK Astronomy Technology Centre, Royal Observatory
Edinburgh, Blackford
Hill, Edinburgh,
EH9 3HJ,
UK
3
Armagh Observatory, College Hill, Armagh, BT61 9DG, Northern Ireland,
UK
4
Institute of Astronomy with NAO, Bulgarian Academy of
Sciences, PO Box
136, 4700
Smoljan,
Bulgaria
5
Instituto de Astrofísica de Canarias, 38200, La Laguna, Tenerife, Spain
6
Departamento de Astrofísica, Universidad de La
Laguna, 38205, La
Laguna Tenerife,
Spain
7
Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD
21218,
USA
8 Dept. of Physics & Astronomy, Hounsfield Road,
University of Sheffield, S3 7RH, UK
9
Astronomical Institute Anton Pannekoek, Amsterdam
University, Science Park
904, 1098 XH
Amsterdam, The
Netherlands
10
Instituut voor Sterrenkunde, Universiteit Leuven,
Celestijnenlaan 200 D,
3001
Leuven,
Belgium
11
Astronomical Institute Anton Pannekoek, Amsterdam
University, Science Park
904, 1098 XH
Amsterdam, The
Netherlands
12
Carnegie Institution for Science: The Observatories,
813 Santa Barbara St,
Pasadena, CA
91101,
USA
13
TAPIR institute, California Institute of Technology,
Pasadena, CA
91125,
USA
14
Department of Physics, Faculty of Engineering and Physical
Sciences, University of Surrey, Guildford, GU2
7XH, UK
15
Argelander-Institut für Astronomie der Universität
Bonn, Auf dem Hügel
71, 53121
Bonn,
Germany
16
European Space Astronomy Centre (ESAC), Camino bajo del Castillo,
s/n Urbanizacion Villafranca del Castillo, Villanueva de la Cañada,
28692
Madrid,
Spain
17
Instituto de Astrofísica de Andalucía-CSIC,
Glorieta de la Astronomía s/n,
18008
Granada,
Spain
18
Centro de Astrobiología (CSIC-INTA), Ctra. de Torrejón a Ajalvir
km-4, 28850 Torrejón de Ardoz, Madrid, Spain
19
Universitäts-Sternwarte, Scheinerstrasse 1, 81679
München,
Germany
20
ESA/STScI, 3700 San Martin Drive, Baltimore, MD
21218,
USA
Received: 22 October 2014
Accepted: 4 December 2014
Context. Model atmosphere analyses have been previously undertaken for both Galactic and extragalactic B-type supergiants. By contrast, little attention has been given to a comparison of the properties of single supergiants and those that are members of multiple systems.
Aims. Atmospheric parameters and nitrogen abundances have been estimated for all the B-type supergiants identified in the VLT-FLAMES Tarantula survey. These include both single targets and binary candidates. The results have been analysed to investigate the role of binarity in the evolutionary history of supergiants.
Methods. tlusty non-local thermodynamic equilibrium (LTE) model atmosphere calculations have been used to determine atmospheric parameters and nitrogen abundances for 34 single and 18 binary supergiants. Effective temperatures were deduced using the silicon balance technique, complemented by the helium ionisation in the hotter spectra. Surface gravities were estimated using Balmer line profiles and microturbulent velocities deduced using the silicon spectrum. Nitrogen abundances or upper limits were estimated from the N ii spectrum. The effects of a flux contribution from an unseen secondary were considered for the binary sample.
Results. We present the first systematic study of the incidence of binarity for a sample of B-type supergiants across the theoretical terminal age main sequence (TAMS). To account for the distribution of effective temperatures of the B-type supergiants it may be necessary to extend the TAMS to lower temperatures. This is also consistent with the derived distribution of mass discrepancies, projected rotational velocities and nitrogen abundances, provided that stars cooler than this temperature are post-red supergiant objects. For all the supergiants in the Tarantula and in a previous FLAMES survey, the majority have small projected rotational velocities. The distribution peaks at about 50 km s-1 with 65% in the range 30 km s-1 ≤ vesini ≤ 60 km s-1. About ten per cent have larger vesini (≥100 km s-1), but surprisingly these show little or no nitrogen enhancement. All the cooler supergiants have low projected rotational velocities of ≤70 km s-1and high nitrogen abundance estimates, implying that either bi-stability braking or evolution on a blue loop may be important. Additionally, there is a lack of cooler binaries, possibly reflecting the small sample sizes. Single-star evolutionary models, which include rotation, can account for all of the nitrogen enhancement in both the single and binary samples. The detailed distribution of nitrogen abundances in the single and binary samples may be different, possibly reflecting differences in their evolutionary history.
Conclusions. The first comparative study of single and binary B-type supergiants has revealed that the main sequence may be significantly wider than previously assumed, extending to Teff = 20 000 K. Some marginal differences in single and binary atmospheric parameters and abundances have been identified, possibly implying non-standard evolution for some of the sample. This sample as a whole has implications for several aspects of our understanding of the evolutionary status of blue supergiants.
Key words: stars: early-type / supergiants / stars: rotation / Magellanic Clouds / open clusters and associations: individual: Tarantula Nebula / stars: atmospheres
Tables 1, 4, 7 are available in electronic form at http://www.aanda.org
© ESO, 2015
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.