Issue |
A&A
Volume 574, February 2015
|
|
---|---|---|
Article Number | A100 | |
Number of page(s) | 7 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361/201425070 | |
Published online | 30 January 2015 |
H.E.S.S. detection of TeV emission from the interaction region between the supernova remnant G349.7+0.2 and a molecular cloud
1
Universität Hamburg, Institut für Experimentalphysik,
Luruper Chaussee 149,
22761
Hamburg, Germany
2
Max-Planck-Institut für Kernphysik, PO Box 103980, 69029
Heidelberg,
Germany
3
Dublin Institute for Advanced Studies,
31 Fitzwilliam Place,
Dublin 2,
Ireland
4 National Academy of Sciences of the Republic of Armenia,
Marshall Baghramian Avenue, 24, 0019 Yerevan, Republic of Armenia
5
Yerevan Physics Institute, 2 Alikhanian Brothers St., 375036
Yerevan,
Armenia
6
Institut für Physik, Humboldt-Universität zu Berlin,
Newtonstr. 15, 12489
Berlin,
Germany
7 University of Namibia, Department of Physics, 13301 Private
Bag, Windhoek, Namibia
8
University of Durham, Department of Physics,
South Road, Durham
DH1 3LE,
UK
9
GRAPPA, Anton Pannekoek Institute for Astronomy, University of
Amsterdam, Science Park
904, 1098 XH
Amsterdam, The
Netherlands
10
ObserwatoriumAstronomiczne, Uniwersytet Jagielloński, ul. Orla
171, 30-244
Kraków,
Poland
11
Now at Harvard-Smithsonian Center for Astrophysics, 60 Garden St.,
MS-20, Cambridge,
MA
02138,
USA
12
Department of Physics and Electrical Engineering, Linnaeus
University, 351
95
Växjö,
Sweden
13
Institut für Theoretische Physik, Lehrstuhl IV: Weltraum und
Astrophysik, Ruhr-Universität Bochum, 44780
Bochum,
Germany
14
GRAPPA, Anton Pannekoek Institute for Astronomy and Institute of
High-Energy Physics, University of Amsterdam, Science Park 904, 1098 XH
Amsterdam, The
Netherlands
15
Institut für Astro- und Teilchenphysik,
Leopold-Franzens-Universität Innsbruck, 6020
Innsbruck,
Austria
16
Laboratoire Leprince-Ringuet, École Polytechnique,
CNRS/IN2P3, 91128
Palaiseau,
France
17
Now at Santa Cruz Institute for Particle Physics, Department of
Physics, University of California at Santa Cruz, Santa Cruz, CA
95064,
USA
18
Centre for Space Research, North-West University,
2520
Potchefstroom, South
Africa
19
LUTH, Observatoire de Paris, CNRS, Université Paris
Diderot, 5 Place Jules
Janssen, 92190
Meudon,
France
20
LPNHE, Université Pierre et Marie Curie Paris 6, Université Denis
Diderot Paris 7, CNRS/IN2P3, 4
Place Jussieu, 75252
Paris Cedex 5,
France
21
Institut für Astronomie und Astrophysik, Universität
Tübingen, Sand 1,
72076
Tübingen,
Germany
22
Laboratoire Univers et Particules de Montpellier, Université
Montpellier 2, CNRS/IN2P3, CC 72,
Place Eugène Bataillon, 34095
Montpellier Cedex 5,
France
23
DSM/Irfu, CEA Saclay, 91191
Gif-Sur-Yvette Cedex,
France
24
Astronomical Observatory, The University of Warsaw,
Al. Ujazdowskie 4, 00-478
Warsaw,
Poland
25
Instytut Fizyki Ja¸drowej PAN, ul. Radzikowskiego
152, 31-342
Kraków,
Poland
26
School of Physics, University of the Witwatersrand,
1 Jan Smuts Avenue, Braamfontein,
2050
Johannesburg, South
Africa
27
Landessternwarte, Universität Heidelberg,
Königstuhl, 69117
Heidelberg,
Germany
28
Oskar Klein Centre, Department of Physics, Stockholm University,
Albanova University Center, 10691
Stockholm,
Sweden
29
School of Chemistry & Physics, University of
Adelaide, 5005
Adelaide,
Australia
30
APC, AstroParticule et Cosmologie, Université Paris Diderot,
CNRS/IN2P3, CEA/Irfu, Observatoire de Paris, Sorbonne Paris Cité, 10 rue Alice Domon et Léonie
Duquet, 75205
Paris Cedex 13,
France
31
Univ. Grenoble Alpes, IPAG, and CNRS, IPAG, 38000
Grenoble,
France
32
Department of Physics and Astronomy, The University of Leicester,
University Road, Leicester, LE1
7RH, UK
33
Nicolaus Copernicus Astronomical Center, ul. Bartycka
18, 00-716
Warsaw,
Poland
34
Institut für Physik und Astronomie, Universität
Potsdam, Karl-Liebknecht-Strasse
24/25, 14476
Potsdam,
Germany
35
Laboratoire d’Annecy-le-Vieux de Physique des Particules,
Université de Savoie, CNRS/IN2P3, 74941
Annecy-le-Vieux,
France
36
DESY, 15738
Zeuthen,
Germany
37
Université Bordeaux 1, CNRS/IN2P3, Centre d’Études Nucléaires de Bordeaux
Gradignan, 33175
Gradignan,
France
38
Universität Erlangen-Nürnberg, Physikalisches
Institut, Erwin-Rommel-Str.
1, 91058
Erlangen,
Germany
39
Centre for Astronomy, Faculty of Physics, Astronomy and
Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100
Torun,
Poland
40
Department of Physics, University of the Free State,
PO Box 339, 9300
Bloemfontein, South
Africa
41
GRAPPA, Institute of High-Energy Physics, University of
Amsterdam, Science Park
904, 1098 XH
Amsterdam, The
Netherlands
Received: 28 September 2014
Accepted: 24 November 2014
G349.7+0.2 is a young Galactic supernova remnant (SNR) located at the distance of 11.5 kpc and observed across the entire electromagnetic spectrum from radio to high energy (HE; 0.1 GeV <E< 100 GeV) γ-rays. Radio and infrared observations indicate that the remnant is interacting with a molecular cloud. In this paper, the detection of very high energy (VHE, E> 100 GeV) γ-ray emission coincident with this SNR with the High Energy Stereoscopic System (H.E.S.S.) is reported. This makes it one of the farthest Galactic SNR ever detected in this domain. An integral flux F(E> 400 GeV) = (6.5 ± 1.1stat ± 1.3syst) × 10−13 ph cm−2 s−1 corresponding to ~0.7% of that of the Crab Nebula and to a luminosity of ~1034 erg s−1 above the same energy threshold, and a steep photon index ΓVHE = 2.8 ± 0.27stat ± 0.20syst are measured. The analysis of more than 5 yr of Fermi-LAT data towards this source shows a power-law like spectrum with a best-fit photon index ΓHE = 2.2 ± 0.04stat+0.13−0.31 sys. The combined γ-ray spectrum of G349.7+0.2 can be described by either a broken power-law (BPL) or a power-law with exponential (or sub-exponential) cutoff (PLC). In the former case, the photon break energy is found at Ebr,γ = 55+70−30 GeV, slightly higher than what is usually observed in the HE/VHE γ-ray emitting middle-aged SNRs known to be interacting with molecular clouds. In the latter case, the exponential (respectively sub-exponential) cutoff energy is measured at Ecut,γ = 1.4+1.6−0.55 (respectively 0.35+0.75−0.21) TeV. A pion-decay process resulting from the interaction of the accelerated protons and nuclei with the dense surrounding medium is clearly the preferred scenario to explain the γ-ray emission. The BPL with a spectral steepening of 0.5−1 and the PLC provide equally good fits to the data. The product of the average gas density and the total energy content of accelerated protons and nuclei amounts to nHWp ~ 5 × 1051 erg cm−3.
Key words: gamma rays: general / ISM: supernova remnants / ISM: clouds
© ESO, 2015
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.