Issue |
A&A
Volume 573, January 2015
|
|
---|---|---|
Article Number | A101 | |
Number of page(s) | 6 | |
Section | Numerical methods and codes | |
DOI | https://doi.org/10.1051/0004-6361/201424908 | |
Published online | 06 January 2015 |
BGLS: A Bayesian formalism for the generalised Lomb-Scargle periodogram⋆,⋆⋆
1 SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, UK
e-mail: am352@st-andrews.ac.uk
2 Centro de Astrofísica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto, Portugal
3 Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Rua das Estrelas, 4150-762 Porto, Portugal
4 Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Portugal
Received: 3 September 2014
Accepted: 25 November 2014
Context. Frequency analyses are very important in astronomy today, not least in the ever-growing field of exoplanets, where short-period signals in stellar radial velocity data are investigated. Periodograms are the main (and powerful) tools for this purpose. However, recovering the correct frequencies and assessing the probability of each frequency is not straightforward.
Aims. We provide a formalism that is easy to implement in a code, to describe a Bayesian periodogram that includes weights and a constant offset in the data. The relative probability between peaks can be easily calculated with this formalism. We discuss the differences and agreements between the various periodogram formalisms with simulated examples.
Methods. We used the Bayesian probability theory to describe the probability that a full sine function (including weights derived from the errors on the data values and a constant offset) with a specific frequency is present in the data.
Results. From the expression for our Baysian generalised Lomb-Scargle periodogram (BGLS), we can easily recover the expression for the non-Bayesian version. In the simulated examples we show that this new formalism recovers the underlying periods better than previous versions. A Python-based code is available for the community.
Key words: methods: data analysis / methods: statistical
A copy of the code is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/573/A101
© ESO, 2015
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.