Issue |
A&A
Volume 572, December 2014
|
|
---|---|---|
Article Number | L6 | |
Number of page(s) | 5 | |
Section | Letters | |
DOI | https://doi.org/10.1051/0004-6361/201425051 | |
Published online | 26 November 2014 |
On the correlation between stellar chromospheric flux and the surface gravity of close-in planets⋆
INAF – Osservatorio Astrofisico di Catania, via S. Sofia, 78, 95123 Catania, Italy
e-mail: nuccio.lanza@oact.inaf.it
Received: 25 September 2014
Accepted: 4 November 2014
Aims. The chromospheric emission of stars with close-in transiting planets has been found to correlate with the surface gravity of their planets. Stars with low-gravity planets have on average a lower chromospheric flux.
Methods. We propose that this correlation is due to the absorption by circumstellar matter that comes from the evaporation of the planets. Planets with a lower gravity have a greater mass-loss rate, which leads to a higher column density of circumstellar absorption and in turn explains the lower level of chromospheric emission observed in their host stars. We estimated the required column density and found that planetary evaporation can account for it. We derived a theoretical relationship between the chromospheric emission as measured in the core of the Ca II H&K lines and the planet gravity.
Results. We applied this relationship to a sample of transiting systems for which both the stellar Ca II H&K emission and the planetary surface gravity are known and found a good agreement, given the various sources of uncertainties and the intrinsic variability of the stellar emissions and planetary evaporation rates. We consider implications for the radial velocity jitter applied to fit the spectroscopic orbits and for the age estimates of planetary systems based on the chromospheric activity level of their host stars.
Key words: planetary systems / stars: activity / stars: chromospheres / circumstellar matter
Appendix A is available in electronic form at http://www.aanda.org
© ESO, 2014
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.