Issue |
A&A
Volume 572, December 2014
|
|
---|---|---|
Article Number | A19 | |
Number of page(s) | 17 | |
Section | Cosmology (including clusters of galaxies) | |
DOI | https://doi.org/10.1051/0004-6361/201424706 | |
Published online | 20 November 2014 |
SARCS strong-lensing galaxy groups
II. Mass-concentration relation and strong-lensing bias⋆
1
Instituto de Física y Astronomía, Universidad de Valparaíso,
Avda. Gran Bretaña 1111,
Valparaíso,
Chile
e-mail: foex.gael@gmail.com
2
Aix-Marseille Université, CNRS, LAM (Laboratoire d’Astrophysique
de Marseille) UMR 7326, 13388
Marseille,
France
3
Dark Cosmology Centre, Niels Bohr Institute, University of
Copenhagen, Juliane Maries Vej
30, 2100
Copenhagen,
Denmark
4
Centro de Investigaciones de Astronomía,
AP 264, Mérida 5101-A,
Venezuela
Received: 30 July 2014
Accepted: 20 September 2014
Aims. Various studies have shown a lensing bias in the mass-concentration relation of cluster-scale structures that is the result of an alignment of the major axis and the line of sight. In this paper, we aim to study this lensing bias through the mass-concentration relation of galaxy groups, thus extending observational constraints to dark matter haloes of mass ~1013−1014 M⊙.
Methods. Our work is based on the stacked weak-lensing analysis of a sample of 80 strong-lensing galaxy groups. By combining several lenses, we significantly increase the signal-to-noise ratio of the lensing signal, thus providing constraints on the mass profile that cannot be obtained for individual objects. The resulting shear profiles were fitted with various mass models, among them the Navarro-Frank-White (NFW) profile, which provides an estimate of the total mass and of the concentration of the composite galaxy groups.
Results. The main results of our analysis are the following: (i) the lensing signal does not allow us to firmly distinguish between a simple singular isothermal sphere mass distribution and the expected NFW mass profile; (ii) we obtain an average concentration c200 = 8.6-1.3+2.1 that is much higher than the value expected from numerical simulations for the corresponding average mass M200 = 0.73-0.10+0.11 × 1014 M⊙; (iii) the combination of our results with those at larger mass scales gives a mass-concentration relation c(M) of more than two decades in mass, whose slope disagrees with predictions from numerical simulations using unbiased populations of dark matter haloes; (iv) our combined c(M) relation matches results from simulations that only used haloes with a large strong-lensing cross-section, that is, elongated with a major axis close to the line of sight; (v) for the simplest case of prolate haloes, we estimate a lower limit on the minor-to-major axis ratio a/c = 0.5 for the average SARCS galaxy group with a toy model.
Conclusions. Our analysis based on galaxy groups confirmed the results obtained at larger mass scales: strong lenses apparently present concentrations that are too high, which arises because the triaxial haloes are preferentially oriented with the line of sight. Because more massive systems already have large lensing cross-sections, they do not require a strong elongation along the line of sight, contrary to less massive galaxy groups. Therefore it is natural to observe higher lensing (projected) concentrations for such systems, resulting in an overall mass-concentration relation steeper than that of nonlensing haloes.
Key words: gravitational lensing: strong / gravitational lensing: weak / galaxies: groups: general / dark matter
© ESO, 2014
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.