Issue |
A&A
Volume 571, November 2014
|
|
---|---|---|
Article Number | A60 | |
Number of page(s) | 10 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361/201424776 | |
Published online | 07 November 2014 |
Imprints of the quasar structure in time-delay light curves: Microlensing-aided reverberation mapping
Argelander-Institut für Astronomie,
Auf dem Hügel 71,
53121
Bonn,
Germany
e-mail:
dsluse@astro.uni-bonn.de
Received: 7 August 2014
Accepted: 12 September 2014
The advent of large area photometric surveys has raised a great deal of interest in the possibility of using broadband photometric data, instead of spectra, to measure the size of the broad line region of active galactic nuclei. We describe here a new method that uses time-delay lensed quasars where one or several images are affected by microlensing due to stars in the lensing galaxy. Because microlensing decreases (or increases) the flux of the continuum compared to the broad line region, it changes the contrast between these two emission components. We show that this effect can be used to effectively disentangle the intrinsic variability of those two regions, offering the opportunity to perform reverberation mapping based on single-band photometric data. Based on simulated light curves generated using a damped random walk model of quasar variability, we show that measurement of the size of the broad line region can be achieved using this method, provided one spectrum has been obtained independently during the monitoring. This method is complementary to photometric reverberation mapping and could also be extended to multi-band data. Because the effect described above produces a variability pattern in difference light curves between pairs of lensed images that is correlated with the time-lagged continuum variability, it can potentially produce systematic errors in measurement of time delays between pairs of lensed images. Simple simulations indicate that time-delay measurement techniques that use a sufficiently flexible model for the extrinsic variability are not affected by this effect and produce accurate time delays.
Key words: gravitational lensing: micro / quasars: general / gravitational lensing: strong
© ESO, 2014
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.