Issue |
A&A
Volume 568, August 2014
|
|
---|---|---|
Article Number | A125 | |
Number of page(s) | 12 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361/201424034 | |
Published online | 05 September 2014 |
Water distribution in shocked regions of the NGC 1333-IRAS 4A protostellar outflow⋆
1 Osservatorio Astrofisico di Arcetri, Largo Enrico Fermi 5, 50125 Florence, Italy
e-mail: gina@arcetri.astro.it
2 Osservatorio Astronomico di Roma, via di Frascati 33, 00040 Monteporzio Catone, Italy
3 Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena CA 91109, USA
4 Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, 2100 Copenhagen Ø., Denmark
5 Centre for Star and Planet Formation and Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5–7, 1350 Copenhagen K., Denmark
6 Department of Earth and Space Sciences, Chalmers University of Technology, Onsala Space Observatory, 439 92 Onsala, Sweden
7 LERMA, Observatoire de Paris, UMR 8112 of the CNRS, 61 Av. de l’Observatoire, 75014 Paris, France
8 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge MA 02138, USA
9 Leiden Observatory, Leiden University, PO Box 9513, 2300 RA Leiden, The Netherlands
10 Observatorio Astronómico Nacional (IGN), Alfonso XII 3, 28014 Madrid, Spain
11 Max Planck Institut für Extraterrestrische Physik (MPE), Giessenbachstr.1, 85748 Garching, Germany
Received: 18 April 2014
Accepted: 19 June 2014
Context. Water is a key molecule in protostellar environments because its line emission is very sensitive to both the chemistry and the physical conditions of the gas. Observations of H2O line emission from low-mass protostars and their associated outflows performed with HIFI onboard the Herschel Space Observatory have highlighted the complexity of H2O line profiles, in which different kinematic components can be distinguished.
Aims. The goal is to study the spatial distribution of H2O, in particular of the different kinematic components detected in H2O emission, at two bright shocked regions along IRAS 4A, one of the strongest H2O emitters among the Class 0 outflows.
Methods. We obtained Herschel-PACS maps of the IRAS 4A outflow and HIFI observations of two shocked positions. The largest HIFI beam of 38′′ at 557 GHz was mapped in several key water lines with different upper energy levels, to reveal possible spatial variations of the line profiles. A large velocity gradient (LVG) analysis was performed to determine the excitation conditions of the gas.
Results. We detect four H2O lines and CO (16−15) at the two selected shocked positions. In addition, transitions from related outflow and envelope tracers are detected. Different gas components associated with the shock are identified in the H2O emission. In particular, at the head of the red lobe of the outflow, two distinct gas components with different excitation conditions are distinguished in the HIFI emission maps: a compact component, detected in the ground-state water lines, and a more extended one. Assuming that these two components correspond to two different temperature components observed in previous H2O and CO studies, the LVG analysis of the H2O emission suggests that the compact (about 3′′, corresponding to about 700 AU) component is associated with a hot (T ~ 1000 K) gas with densities nH2 ~ (1−4) × 105 cm-3, whereas the extended (10′′−17′′, corresponding to 2400−4000 AU) one traces a warm (T ~ 300−500 K) and dense gas (nH2 ~ (3−5) × 107 cm-3). Finally, using the CO (16−15) emission observed at R2 and assuming a typical CO/H2 abundance of 10-4, we estimate the H2O/H2 abundance of the warm and hot components to be (7−10) × 10-7 and (3−7) × 10-5.
Conclusions. Our data allowed us, for the first time, to resolve spatially the two temperature components previously observed with HIFI and PACS. We propose that the compact hot component may be associated with the jet that impacts the surrounding material, whereas the warm, dense, and extended component originates from the compression of the ambient gas by the propagating flow.
Key words: stars: low-mass / ISM: jets and outflows / ISM: molecules / ISM: individual objects: NGC 1333-IRAS 4A / stars: formation
PACS maps and HIFI spectra (FITS format) are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/568/A125
© ESO, 2014
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.