Issue |
A&A
Volume 557, September 2013
|
|
---|---|---|
Article Number | A23 | |
Number of page(s) | 13 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361/201321619 | |
Published online | 20 August 2013 |
Observational evidence for dissociative shocks in the inner 100 AU of low-mass protostars using Herschel-HIFI⋆
1 Leiden Observatory, Leiden University, PO Box 9513, 2300 RA Leiden, The Netherlands
e-mail: lkristensen@cfa.harvard.edu
2 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA
3 Max Planck Institut für Extraterrestrische Physik, Giessenbachstrasse 1, 85748 Garching, Germany
4 Institute for Astronomy, ETH Zurich, 8093 Zurich, Switzerland
5 Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109-1042, USA
6 Centre for Star and Planet Formation, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen K, Denmark
7 Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, 2100 Copenhagen Ø, Denmark
Received: 1 April 2013
Accepted: 24 June 2013
Aims. Herschel-HIFI spectra of H2O towards low-mass protostars show a distinct velocity component not seen in observations from the ground of CO or other species. The aim is to characterise this component in terms of excitation conditions and physical origin.
Methods. A velocity component with an offset of ~10 km s-1 detected in spectra of the H2O 110–101 557 GHz transition towards six low-mass protostars in the “Water in star-forming regions with Herschel” (WISH) programme is also seen in higher-excited H2O lines. The emission from this component is quantified and local excitation conditions are inferred using 1D slab models. Data are compared to observations of hydrides (high-J CO, OH+, CH+, C+, OH) where the same component is uniquely detected.
Results. The velocity component is detected in all six targeted H2O transitions (Eup ~ 50–250 K), as well as in CO 16–15 towards one source, Ser SMM1. Inferred excitation conditions imply that the emission arises in dense (n ~ 5 × 106–108 cm-3) and hot (T ~ 750 K) gas. The H2O and CO column densities are ≳1016 and 1018 cm-2, respectively, implying a low H2O abundance of ~10-2 with respect to CO. The high column densities of ions such as OH+ and CH+ (both ≳1013 cm-2) indicate an origin close to the protostar where the UV field is strong enough that these species are abundant. The estimated radius of the emitting region is 100 AU. This component likely arises in dissociative shocks close to the protostar, an interpretation corroborated by a comparison with models of such shocks. Furthermore, one of the sources, IRAS 4A, shows temporal variability in the offset component over a period of two years which is expected from shocks in dense media. High-J CO gas detected with Herschel-PACS with Trot ~ 700 K is identified as arising in the same component and traces the part of the shock where H2 reforms. Thus, H2O reveals new dynamical components, even on small spatial scales in low-mass protostars.
Key words: astrochemistry / stars: formation / ISM: molecules / ISM: jets and outflows
© ESO, 2013
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.