Issue |
A&A
Volume 568, August 2014
|
|
---|---|---|
Article Number | A57 | |
Number of page(s) | 14 | |
Section | Cosmology (including clusters of galaxies) | |
DOI | https://doi.org/10.1051/0004-6361/201423761 | |
Published online | 14 August 2014 |
Modeling the cross power spectrum of the Sunyaev-Zel’dovich and X-ray surveys
Institut d’Astrophysique Spatiale, CNRS (UMR 8617) and Université Paris-Sud
11,
Bâtiment 121,
91405
Orsay,
France
e-mail:
ghurier@ias.u-psud.fr
Received:
5
March
2014
Accepted:
25
May
2014
The thermal Sunyaev-Zel’dovich (tSZ) effect and X-ray emission from galaxy clusters have been used extensively to constrain cosmological parameters. These constraints are highly sensitive to the relations between cluster masses and observables (tSZ and X-ray fluxes). The cross-correlation of tSZ and X-ray data is thus a powerful tool, in addition of tSZ and X-ray based analysis, for testing our modeling of both tSZ and X-ray emission from galaxy clusters. We chose to explore this cross-correlation because both emissions trace the hot gas in galaxy clusters and thus constitute one of the easiest correlations that can be studied. We present a complete modeling of the cross-correlation between tSZ effect and X-ray emission from galaxy clusters and focus on the dependencies with cluster scaling laws and cosmological parameters. We show that current knowledge of cosmological parameters and scaling-law parameters leads to uncertainties of 48% on the overall normalization of the tSZ-X cross-correlation power spectrum. We present the expected signal-to-noise ratio for the tSZ-X cross-correlation angular power spectrum and consider the sensitivity of actual tSZ and X-ray surveys from Planck-like data and ROSAT. We demonstrate that this signal-to-noise can reach 31.5 in a realistic situation, leading to a constraint on the amplitude of tSZ-X cross-correlation up to 3.2%, which is ten times better than actual modeling limitations. Consequently, using it in addition to other probes of cosmological parameters and scaling relations, we show that the tSZ-X is a powerful probe that constrains the cosmological parameters of scaling relations.
Key words: galaxies: clusters: general / X-rays: galaxies: clusters / submillimeter: general / large-scale structure of Universe / galaxies: clusters: intracluster medium
© ESO, 2014
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.