Issue |
A&A
Volume 568, August 2014
|
|
---|---|---|
Article Number | A116 | |
Number of page(s) | 11 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361/201323360 | |
Published online | 03 September 2014 |
Deep optical imaging and spectroscopy of the lens system SDSS J1339+1310
1 Departamento de Física Moderna, Universidad de Cantabria, Avda. de Los Castros s/n, 39005 Santander, Spain
e-mail: vshal@ukr.net; goicol@unican.es
2 Institute for Radiophysics and Electronics, National Academy of Sciences of Ukraine, 12 Proskura St., 61085 Kharkov, Ukraine
Received: 31 December 2013
Accepted: 16 July 2014
We present deep I-band imaging (NOT-ALFOSC) and spectroscopic (GTC-OSIRIS) observations of the gravitational lens system SDSS J1339+1310. This consists of two images of a lensed quasar, A and B, and a lensing galaxy G between the two quasar images. Our observations led to the following main results: (1) We obtained new accurate positions for B and G (relative to A), as well as structure parameters for the light distribution of G. The new position angle for G is separated by ~50° from the previously determined value. (2) The spectrum of G is typical for early-type galaxies, and we measured its redshift (0.609 ± 0.001) for the first time. (3) We determined the flux ratio B/A for the cores of the emission lines in the two quasar spectra. They were used to constrain the macrolens flux ratio MBA and dust extinction parameters. (4) The continuum flux ratio was appropriately corrected to obtain the microlensing magnification ratio of the continuum μBA. This μBA indicates that B is amplified (relative to A) by a factor of about 3−5, with larger amplifications at shorter wavelengths. The observed microlensing chromaticity coincides with a sharp drop in the r-band flux of B. (5) We reconstructed the lensing mass from the new observational constraints on the relative astrometry, MBA and the luminous structure of G. We also used the redshift of G to predict the time delay between quasar images (43 ± 5 d, A is leading).
Key words: gravitational lensing: strong / gravitational lensing: micro / galaxies: halos / quasars: general / quasars: individual: SDSS J1339+1310
© ESO, 2014
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.