Issue |
A&A
Volume 567, July 2014
|
|
---|---|---|
Article Number | A105 | |
Number of page(s) | 14 | |
Section | Galactic structure, stellar clusters and populations | |
DOI | https://doi.org/10.1051/0004-6361/201423971 | |
Published online | 22 July 2014 |
The colour–magnitude relation of globular clusters in Centaurus and Hydra
Constraints on star cluster self-enrichment with a link to massive Milky Way globular clusters
1 École polytechnique, route de Saclay, 91128 Palaiseau, France
e-mail: jeremy.fensch@gmail.com
2 European Southern Observatory, Alonso de Cordova 3107, Vitacura, Santiago de Chile, Chile
3 European Southern Observatory, Karl-Schwarzschild-Str. 2, 85748 Garching b. München, Germany
Received: 9 April 2014
Accepted: 30 May 2014
Aims. We investigate the colour–magnitude relation of metal-poor globular clusters, the so-called blue tilt, in the Hydra and Centaurus galaxy clusters and constrain the primordial conditions for star cluster self-enrichment.
Methods. We analyse U,I photometry for about 2500 globular clusters in the central regions of Hydra and Centaurus, based on VLT/FORS1 data. We measure the relation between mean colour and luminosity for the blue and red subpopulation of the globular cluster samples. We convert these relations into mass-metallicity space and compare the obtained GC mass-metallicity relation with predictions from the star cluster self-enrichment model by Bailin & Harris (2009, ApJ, 695, 1082). For this we include effects of dynamical and stellar evolution and a physically well motivated primordial mass-radius scaling.
Results. We obtain a mass-metallicity scaling of Z ∝ M0.27 ± 0.05 for Centaurus GCs and Z ∝ M0.40 ± 0.06 for Hydra GCs, consistent with the range of observed relations in other environments. We find that the GC mass-metallicity relation already sets in at present-day masses of a few and is well established in the luminosity range of massive MW clusters like ω Centauri. The inclusion of a primordial mass-radius scaling of star clusters significantly improves the fit of the self-enrichment model to the data. The self-enrichment model accurately reproduces the observed relations for average primordial half-light radii rh ~ 1−1.5 pc, star formation efficiencies f⋆ ~ 0.3−0.4, and pre-enrichment levels of [Fe/H] − 1.7 dex. The slightly steeper blue tilt for Hydra can be explained either by a ~30% smaller average rh at fixed f⋆ ~ 0.3, or analogously by a ~20% smaller f⋆ at fixed rh ~ 1.5 pc. Within the self-enrichment scenario, the observed blue tilt implies a correlation between GC mass and width of the stellar metallicity distribution. We find that this implied correlation matches the trend of width with GC mass measured in Galactic GCs, including extreme cases like ω Centauri and M 54.
Conclusions. First, we found that a primordial star cluster mass-radius relation provides a significant improvement to the self-enrichment model fits. Second we show that broadened metallicity distributions as found in some massive MW globular clusters may have arisen naturally from self-enrichment processes, without the need of a dwarf galaxy progenitor.
Key words: supernovae: general / globular clusters: general / galaxies: star clusters: general / stars: formation
© ESO, 2014
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.