Issue |
A&A
Volume 566, June 2014
|
|
---|---|---|
Article Number | A15 | |
Number of page(s) | 7 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361/201323303 | |
Published online | 02 June 2014 |
The radio core structure of the luminous infrared galaxy NGC 4418
A young clustered starburst revealed?
1
Department of Earth and Space SciencesChalmers University of Technology,
Onsala Space Observatory,
439 92
Onsala,
Sweden
e-mail:
varenius@chalmers.se
2
Jodrell Bank Centre for Astrophysics, Alan Turing Building, School
of Physics and Astronomy, The University of Manchester, Manchester
M13 9PL,
UK
3
Instituto de Astrofísica de Andalucía,
Glorieta de la Astronomá, s/n,
18008
Granada,
Spain
4
Max-Planck-Institut für Radioastronomie,
auf dem Hügel 69, 53121
Bonn,
Germany
Received: 20 December 2013
Accepted: 13 February 2014
Context. The galaxy NGC 4418 contains one of the most compact obscured nuclei within a luminous infrared galaxy (LIRG) in the nearby Universe. This nucleus contains a rich molecular gas environment and an unusually high ratio of infrared-to-radio luminosity (q-factor). The compact nucleus is powered by either a compact starburst or an active galactic nucleus (AGN).
Aims. The aim of this study is to constrain the nature of the nuclear region (starburst or AGN) within NGC 4418 via very-high-resolution radio imaging.
Methods. Archival data from radio observations using the European Very Long Baseline Interferometry Network (EVN) and Multi-Element Radio Linked Interferometer Network (MERLIN) interferometers are imaged. Sizes and flux densities are obtained by fitting Gaussian intensity distributions to the image. The average spectral index of the compact radio emission is estimated from measurements at 1.4 GHz and 5.0 GHz.
Results. The nuclear structure of NGC 4418 visible with EVN and MERLIN consists of eight compact (<49 mas i.e. <8 pc) features spread within a region of 250 mas, i.e. 41 pc. We derive an inverted spectral index α ≥ 0.7 (Sν ∝ να) for the compact radio emission.
Conclusions. Brightness temperatures >104.8 K indicate that these compact features cannot be HII-regions. The complex morphology and inverted spectrum of the eight detected compact features is evidence against the hypothesis that an AGN alone is powering the nucleus of NGC 4418. The compact features could be super star clusters with intense star formation, and their associated free-free absorption could then naturally explain both their inverted radio spectrum and the low radio-to-IR ratio of the nucleus. The required star formation area density is extreme, however, and close to the limit of what can be observed in a well-mixed thermal/non-thermal plasma produced by star formation, and is also close to the limit of what can be physically sustained.
Key words: galaxies: Seyfert / galaxies: star formation / galaxies: individual: NGC 4418
© ESO, 2014
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.