Issue |
A&A
Volume 565, May 2014
|
|
---|---|---|
Article Number | A102 | |
Number of page(s) | 13 | |
Section | Astronomical instrumentation | |
DOI | https://doi.org/10.1051/0004-6361/201423460 | |
Published online | 19 May 2014 |
High resolution mesospheric sodium properties for adaptive optics applications⋆
1
European Southern Observatory (ESO), Karl-Schwarzschild-Strasse 2, 85758
Garching bei München,
Germany
e-mail: tpfromme@eso.org
2
University of British Columbia, Department of Physics and
Astronomy, 6224 Agricultural
Road, Vancouver,
BC, V6T1Z1, Canada
e-mail: hickson@phas.ubc.ca
3
Institut d’Astrophysique et de Géophysique, Université de
Liège, Allée du 6 août, 17 – Bat.
B5c, 4000
Liège 1,
Belgique
Received:
19
January
2014
Accepted:
20
March
2014
Context. The performance of laser guide star adaptive optics (AO) systems for large optical and infrared telescopes is affected by variability of the sodium layer, located at altitudes between 80 and 120 km in the upper mesosphere and lower thermosphere. The abundance and density structure of the atomic sodium found in this region is subject to local and global weather effects, planetary and gravity waves and magnetic storms, and is variable on time scales down to tens of milliseconds, a range relevant to AO.
Aims. It is therefore important to characterize the structure and dynamical evolution of the sodium region on small, as well as large spatial and temporal scales. Parameters of particular importance for AO are the mean sodium altitude, sodium layer width and the temporal power spectrum of the centroid altitude.
Methods. We have conducted a three-year campaign employing a high-resolution lidar system installed on the 6-m Large Zenith Telescope (LZT) located near Vancouver, Canada. During this period, 112 nights of useful data were obtained.
Results. The vertical density profile of atomic sodium shows remarkable
structure and variability. Smooth Gaussian-shaped profiles rarely occur. Multiple internal
layers are frequently found. These layers often have sharp lower edges, with scale heights
of just a few hundred meters, and tend to drift downwards at a typical rate of one
kilometer every two to three hours. Individual layers can persist for many hours, but
their density and internal structure can be highly variable. Sporadic layers are seen
reaching peak densities several times the average, often in just a few minutes. Coherent
vertical oscillations are often found, typically extending over tens of kilometers in
altitude. Regions of turbulence are evident and Kelvin-Helmholtz instability are sometimes
seen. The mean value of the centroid altitude is found to be 90.8 ± 0.1 km. The sodium layer width was
determined by computing the altitude range that contains a specified fraction of the
returned sodium light. We find a mean value of 13.1 ± 0.3 km for the range containing 95% of the photons, with a
maximum width of 21 km. The temporal power spectral density of fluctuations of the
centroid altitude is well described by a power law having an index that ranges from
−1.6 to −2.3 with a mean value of −1.87 ± 0.02. This is significantly steeper
than the value of −5/3 that
would be expected if the dynamics were dominated by Kolmogorov turbulence, indicating that
other factors such as gravity waves play an important role. The amplitude of the power
spectrum has a mean value of m2 Hz-1 at a frequency of 1 Hz, but ranges over two orders of
magnitude. The annual means of the index and amplitude show a variation that is well
beyond the calculated error range. Long-term global weather patterns may be responsible
for this effect.
Key words: atmospheric effects / instrumentation: adaptive optics / site testing / methods: observational
The database is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/565/A102
© ESO, 2014
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.