Issue |
A&A
Volume 564, April 2014
|
|
---|---|---|
Article Number | A61 | |
Number of page(s) | 16 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361/201323329 | |
Published online | 07 April 2014 |
Interstellar gamma-ray emission from cosmic rays in star-forming galaxies
Institut de Recherche en Astrophysique et Planétologie, UPS/CNRS, UMR5277, 31028 Toulouse Cedex 4, France
e-mail: pierrick.martin@irap.omp.eu
Received: 23 December 2013
Accepted: 8 January 2014
Context. Fermi/LAT observations of star-forming galaxies in the ~0.1−100 GeV range have made possible a first population study. Evidence was found for a correlation between γ-ray luminosity and tracers of the star formation activity. Studying galactic cosmic rays (CRs) in various global conditions can yield information about their origin and transport in the interstellar medium (ISM).
Aims. This work addresses the question of the scaling laws that can be expected for the interstellar γ-ray emission as a function of global galactic properties, with the goal of establishing whether the current experimental data in the GeV range can be constraining.
Methods. I developed a 2D model for the non-thermal emissions from steady-state CR populations interacting with the ISM in star-forming galaxies. Most CR-related parameters were taken from Milky Way studies, and a large number of galaxies were then simulated with sizes from 4 to 40 kpc, several gas distributions, and star formation rates (SFRs) covering six orders of magnitude.
Results. The evolution of the γ-ray luminosity over the 100 keV−100 TeV range is presented, with emphasis on the contribution of the different emission processes and particle populations, and on the transition between transport regimes. The model can reproduce the normalisation and trend inferred from the Fermi/LAT population study over most of the SFR range. This is obtained with a plain diffusion scheme, a single diffusion coefficient, and the assumption that CRs experience large-scale volume-averaged interstellar conditions. There is, however, no universal relation between high-energy γ-ray luminosity and star formation activity, as illustrated by the scatter introduced by different galactic global properties and the downturn in γ-ray emission at the low end.
Conclusions. The current Fermi/LAT population study does not call for major modifications of the transport scheme for CRs in the Milky Way when extrapolated to other systems, probably because the uncertainties are still too large. Additional constraints may be expected from doubling the Fermi/LAT exposure time and later from observing at TeV energies with the Cherenkov Telescope Array.
Key words: astroparticle physics / cosmic rays / gamma rays: galaxies
© ESO, 2014
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.