Issue |
A&A
Volume 564, April 2014
|
|
---|---|---|
Article Number | A59 | |
Number of page(s) | 16 | |
Section | Numerical methods and codes | |
DOI | https://doi.org/10.1051/0004-6361/201323169 | |
Published online | 07 April 2014 |
Accuracy tests of radiation schemes used in hot Jupiter global circulation models
1 Astrophysics Group, University of Exeter, Exeter EX4 4QL, UK
e-mail: D.S.Amundsen@exeter.ac.uk
2 Met Office, Exeter EX1 3PB, UK
Received: 2 December 2013
Accepted: 3 February 2014
The treatment of radiation transport in global circulation models (GCMs) is crucial for correctly describing Earth and exoplanet atmospheric dynamics processes. The two-stream approximation and correlated-k method are currently state-of-the-art approximations applied in both Earth and hot Jupiter GCM radiation schemes to facilitate the rapid calculation of fluxes and heating rates. Their accuracy have been tested extensively for Earth-like conditions, but verification of the methods’ applicability to hot Jupiter-like conditions is lacking in the literature. We are adapting the UK Met Office GCM, the Unified Model (UM), for the study of hot Jupiters, and present in this work the adaptation of the Edwards-Slingo radiation scheme based on the two-stream approximation and the correlated-k method. We discuss the calculation of absorption coefficients from high-temperature line lists and highlight the large uncertainty in the pressure-broadened line widths. We compare fluxes and heating rates obtained with our adapted scheme to more accurate discrete ordinate (DO) line-by-line (LbL) calculations ignoring scattering effects. We find that, in most cases, errors stay below 10% for both heating rates and fluxes using ~10 k-coefficients in each band and a diffusivity factor D = 1.66. The two-stream approximation and the correlated-k method both contribute non-negligibly to the total error. We also find that using band-averaged absorption coefficients, which have previously been used in radiative-hydrodynamical simulations of a hot Jupiter, may yield errors of ~100%, and should thus be used with caution.
Key words: radiative transfer / opacity / planets and satellites: atmospheres / planets and satellites: gaseous planets
© ESO, 2014
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.