Issue |
A&A
Volume 564, April 2014
|
|
---|---|---|
Article Number | A113 | |
Number of page(s) | 10 | |
Section | Cosmology (including clusters of galaxies) | |
DOI | https://doi.org/10.1051/0004-6361/201322051 | |
Published online | 15 April 2014 |
Cosmic microwave background anomalies from imperfect dark energy
Confrontation with the data
1 Institute of Theoretical Astrophysics, University of Oslo, PO Box 1029 Blindern, 0315 Oslo, Norway
e-mail: magnusax@astro.uio.no
2 Institute for Theoretical Physics and the Spinoza Institute, Utrecht University, Leuvenlaan 4, Postbus 80.195, 3508 TD Utrecht, The Netherlands
Received: 10 June 2013
Accepted: 3 February 2014
We test anisotropic dark energy models with the 7-year WMAP temperature observation data. In the presence of imperfect sources, large-scale gradients or anisotropies in the dark energy mean that the CMB sky will be distorted anisotropically on its way to us by the ISW effect. The signal covariance matrix then becomes non-diagonal for small multipoles, but at ℓ ≳ 20 the anisotropy is negligible for any reasonably probable values of the already constrained dark energy fluid parameters. As a consequence, only possible large-scale anisotropies are studied in this paper. We parametrize possible violations of rotational invariance in the late universe by the magnitude of a post-Friedmannian deviation from isotropy and its scale dependence, where the deviation from isotropy is modeled through a mismatch between the φ and ψ potentials that arise due to anisotropic stresses caused by some (unknown) mechanism. In this sense, our model is general. In this paper we explore the possibility that the stresses are caused by an imperfect dark energy component in the form of a vector field aligned with some axis. This way we may obtain hints of the possible imperfect nature of dark energy and the large-angle anomalous features in the CMB. A robust statistical analysis, subjected to various tests and consistency checks, is performed to compare the predicted correlations with those obtained from the satellite-measured CMB full sky maps. The preferred axis points toward (l,b) = (168°, −31°) and the amplitude of the anisotropy is ϖ0 = (0.51 ± 0.94) (1σ deviation quoted). The best fit model has a steep blue anisotropic spectrum (nde = 3.1 ± 1.5). In light of recent studies, the model provides an interesting extension of the standard model of cosmology, since it is able to account for the apparent deficit in large-scale power in the spectrum through a physically motivated late time ISW effect. Further studies of this class of models are justified by the results of the analysis, which suggest that it cannot be ruled out at present.
Key words: methods: data analysis / methods: statistical / cosmology: theory / dark energy / cosmological parameters
© ESO, 2014
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.