Issue |
A&A
Volume 563, March 2014
|
|
---|---|---|
Article Number | A94 | |
Number of page(s) | 15 | |
Section | Galactic structure, stellar clusters and populations | |
DOI | https://doi.org/10.1051/0004-6361/201323288 | |
Published online | 14 March 2014 |
The Gaia-ESO Survey: Kinematic structure in the Gamma Velorum cluster⋆,⋆⋆
1
Astrophysics Group, Keele University,
Keele,
ST5 5BG,
UK
e-mail:
r.d.jeffries@keele.ac.uk
2
Institute for Astronomy, ETH Zurich, Wolfgang-Pauli-Strasse 27,
8093
Zurich,
Switzerland
3
Institute of Astronomy, University of Cambridge,
Madingley Road,
Cambridge
CB3 0HA,
UK
4
Dipartimento di Fisica e Astronomia, Sezione Astrofisica,
Università di Catania, via S. Sofia
78, 95123
Catania,
Italy
5
INAF – Osservatorio Astronomico di Palermo, Piazza del Parlamento
1, 90134
Palermo,
Italy
6
INAF – Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5,
50125
Florence,
Italy
7
INAF – Osservatorio Astrofisico di Catania, via S. Sofia 78,
95123
Catania,
Italy
8
Instituto de Astrofísica de Andalucía-CSIC,
Apdo. 3004,
18080
Granada,
Spain
9
Lund Observatory, Department of Astronomy and Theoretical
Physics, Box 43,
221 00
Lund,
Sweden
10
INAF – Osservatorio Astronomico di Bologna, via Ranzani 1,
40127
Bologna,
Italy
11
Laboratoire Lagrange (UMR7293), Université de Nice Sophia
Antipolis, CNRS, Observatoire de la Côte d’Azur, BP 4229, 06304
Nice Cedex 4,
France
Received:
18
December
2013
Accepted:
20
January
2014
Context. A key science goal of the Gaia-ESO survey (GES) at the VLT is to use the kinematics of low-mass stars in young clusters and star forming regions to probe their dynamical histories and how they populate the field as they become unbound. The clustering of low-mass stars around the massive Wolf-Rayet binary system γ2 Velorum was one of the first GES targets.
Aims. We empirically determine the radial velocity precision of GES data, construct a kinematically unbiased sample of cluster members and characterise their dynamical state.
Methods. Targets were selected from colour–magnitude diagrams and intermediate resolution spectroscopy was used to derive radial velocities and assess membership from the strength of the Li i 6708 Å line. The radial velocity distribution was analysed using a maximum likelihood technique that accounts for unresolved binaries.
Results. The GES radial velocity precision is about 0.25 km s-1 and sufficient to resolve velocity structure in the low-mass population around γ2 Vel. The structure is well fitted by two kinematic components with roughly equal numbers of stars; the first has an intrinsic dispersion of 0.34 ± 0.16 km s-1, consistent with virial equilibrium. The second has a broader dispersion of 1.60 ± 0.37 km s-1 and is offset from the first by ≃2 km s-1. The first population is older by 1–2 Myr based on a greater level of Li depletion seen among its M-type stars and is probably more centrally concentrated around γ2 Vel.
Conclusions. We consider several formation scenarios, concluding that the two kinematic components are a bound remnant of the original, denser cluster that formed γ2 Vel, and a dispersed population from the wider Vela OB2 association, of which γ2 Vel is the most massive member. The apparent youth of γ2 Vel compared to the older (≥10 Myr) low-mass population surrounding it suggests a scenario in which the massive binary formed in a clustered environment after the formation of the bulk of the low-mass stars.
Key words: stars: pre-main sequence / stars: kinematics and dynamics / open clusters and associations: individual: gamma2 Velorum / stars: formation
Based on observations collected with the FLAMES spectrograph at VLT/UT2 telescope (Paranal Observatory, ESO, Chile), for the Gaia- ESO Large Public Survey (188.B-3002).
Full Table 2 is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/563/A94
© ESO, 2014
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.