Issue |
A&A
Volume 562, February 2014
|
|
---|---|---|
Article Number | A123 | |
Number of page(s) | 8 | |
Section | Stellar structure and evolution | |
DOI | https://doi.org/10.1051/0004-6361/201322641 | |
Published online | 19 February 2014 |
Limits on the neutrino magnetic dipole moment from the luminosity function of hot white dwarfs
1
Max-Planck-Institut für Astrophysik,
Karl-Schwarzschild-Str. 1,
8574
Garching,
Germany
e-mail:
marcelo@MPA-Garching.MPG.DE
2
Instituto de Astrofísica de La Plata, UNLP-CONICET, Paseo del Bosque s/n,
1900
La Plata,
Argentina
e-mail:
mmiller@fcaglp.unlp.edu.ar
Received:
10
September
2013
Accepted:
26
November
2013
Context. Recent determinations of the white dwarf luminosity function (WDLF) from very large surveys have extended our knowledge of the WDLF to very high luminosities. This, together with the availability of new full evolutionary white dwarf models that are reliable at high luminosities, have opened the possibility of testing particle emission in the core of very hot white dwarfs, where neutrino processes are dominant.
Aims. We use the available WDLFs from the Sloan Digital Sky Survey and the SuperCOSMOS Sky Survey to constrain the value of the neutrino magnetic dipole moment (μν).
Methods. We used a state-of-the-art stellar evolution code to compute a grid of white dwarf cooling sequences under the assumptions of different values of μν. Then we constructed theoretical WDLFs for different values of μν and performed a χ2-test to derive constraints on the value of μν.
Results. We find that the WDLFs derived from the Sloan Digital Sky Survey and the SuperCOSMOS Sky Survey do not yield consistent results. The discrepancy between the two WDLFs suggests that the uncertainties are significantly underestimated. Consequently, we constructed a unified WDLF by averaging the SDSS and SSS and estimated the uncertainties by taking into account the differences between the WDLF at each magnitude bin. Then we compared all WDLFs with theoretical WDLFs. Comparison between theoretical WDLFs and both the SDSS and the averaged WDLF indicates that μν should be μν < 5 × 10-12 eħ/(2mec). In particular, a χ2-test on the averaged WDLF suggests that observations of the disk WDLF exclude values of μν > 5 × 10-12eħ/(2mec) at more than a 95% confidence level, even when conservative estimates of the uncertainties are adopted. This is close to the best available constraints on μν from the physics of globular clusters.
Conclusions. Our study shows that modern WDLFs, which extend to the high-luminosity regime, are an excellent tool for constraining the emission of particles in the core of hot white dwarfs. However, discrepancies between different WDLFs suggest there might be some relevant unaccounted systematic errors. A larger set of completely independent WDLFs, as well as more detailed studies of the theoretical WDLFs and their own uncertainties, is desirable to explore the systematic uncertainties behind this constraint. Once this is done, we believe the Galactic disk WDLF will offer constraints on the magnetic dipole moment of the neutrino similar to the best available constraints obtainable from globular clusters.
Key words: white dwarfs / stars: luminosity function, mass function / elementary particles
© ESO, 2014
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.