Issue |
A&A
Volume 562, February 2014
|
|
---|---|---|
Article Number | A119 | |
Number of page(s) | 10 | |
Section | Atomic, molecular, and nuclear data | |
DOI | https://doi.org/10.1051/0004-6361/201322140 | |
Published online | 18 February 2014 |
Vacuum-UV spectroscopy of interstellar ice analogs
I. Absorption cross-sections of polar-ice molecules⋆
1
Centro de Astrobiología, INTA-CSIC, Carretera de Ajalvir,
km 4, Torrejón de Ardoz,
28850
Madrid, Spain
e-mail: cruzdga@cab.inta-csic.es;
munozcg@cab.inta-csic.es
2
Space Sciences Center and Department of Physics and Astronomy,
University of Southern California, Los Angeles, CA
90089-1341,
USA
3
Department of Physics, National Central University,
Jhongli City, 32054
Taoyuan Country,
Taiwan
Received:
25
June
2013
Accepted:
15
December
2013
Context. The vacuum-UV (VUV) absorption cross sections of most molecular solids present in interstellar ice mantles with the exception of H2O, NH3, and CO2 have not been reported yet. Models of ice photoprocessing depend on the VUV absorption cross section of the ice to estimate the penetration depth and radiation dose, and in the past, gas phase cross section values were used as an approximation.
Aims. We aim to estimate the VUV absorption cross section of molecular ice components.
Methods. Pure ices composed of CO, H2O, CH3OH, NH3, or H2S were deposited at 8 K. The column density of the ice samples was measured in situ by infrared spectroscopy in transmittance. VUV spectra of the ice samples were collected in the 120–160 nm (10.33–7.74 eV) range using a commercial microwave-discharged hydrogen flow lamp.
Results. We provide VUV absorption cross sections of the reported molecular ices. Our results agree with those previously reported for H2O and NH3 ices. Vacuum-UV absorption cross section of CH3OH, CO, and H2S in solid phase are reported for the first time. H2S presents the highest absorption in the 120–160 nm range.
Conclusions. Our method allows fast and readily available VUV spectroscopy of ices without the need to use a synchrotron beamline. We found that the ice absorption cross sections can be very different from the gas-phase values, and therefore, our data will significantly improve models that simulate the VUV photoprocessing and photodesorption of ice mantles. Photodesorption rates of pure ices, expressed in molecules per absorbed photon, can be derived from our data.
Key words: astrochemistry / ultraviolet: ISM / ISM: molecules / instrumentation: spectrographs / methods: laboratory / techniques: photometric
Data can be found at http://ghosst.osug.fr/
© ESO, 2014
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.