Issue |
A&A
Volume 561, January 2014
|
|
---|---|---|
Article Number | A59 | |
Number of page(s) | 8 | |
Section | Astronomical instrumentation | |
DOI | https://doi.org/10.1051/0004-6361/201322746 | |
Published online | 23 December 2013 |
Flat-relative optimal extraction
A quick and efficient algorithm for stabilised spectrographs⋆
1
Institut für Astrophysik, Georg-August-Universität,
Friedrich-Hund-Platz 1,
37077
Göttingen,
Germany
e-mail:
zechmeister@astro.physik.uni-goettingen.de
2
Astronomy Unit, Queen Mary University of London,
Mile End Road,
London
E1 4NS,
UK
Received:
24
September
2013
Accepted:
29
October
2013
Context. Optimal extraction is a key step in processing the raw images of spectra as registered by two-dimensional detector arrays to a one-dimensional format. Previously reported algorithms reconstruct models for a mean one-dimensional spatial profile to assist a properly weighted extraction.
Aims. We outline a simple optimal extraction algorithm (including error propagation), which is very suitable for stabilised, fibre-fed spectrographs and does not model the spatial profile shape.
Methods. A high signal-to-noise ratio, master-flat image serves as reference image and is directly used as an extraction profile mask. Each extracted spectral value is the scaling factor relative to the cross-section of the unnormalised master flat that contains all information about the spatial profile, as well as pixel-to-pixel variations, fringing, and blaze. The extracted spectrum is measured relative to the flat spectrum.
Results. Using echelle spectra of the HARPS spectrograph we demonstrate a competitive extraction performance in terms of a signal-to-noise ratio and show that extracted spectra can be used for high precision radial velocity measurement.
Conclusions. Pre- or post-flat-fielding of the data is not necessary, since all spectrograph inefficiencies inherent to the extraction mask are automatically accounted for. Also the reconstruction of the mean spatial profile by models is not needed, thereby reducing the number of operations to extract spectra. Flat-relative optimal extraction is a simple, efficient, and robust method that can be applied easily to stabilised, fibre-fed spectrographs.
Key words: instrumentation: spectrographs / methods: data analysis / techniques: image processing / techniques: radial velocities
© ESO, 2013
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.