Issue |
A&A
Volume 561, January 2014
|
|
---|---|---|
Article Number | A64 | |
Number of page(s) | 19 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361/201219270 | |
Published online | 03 January 2014 |
A Gemini/GMOS study of the physical conditions and kinematics of the blue compact dwarf galaxy Mrk 996⋆,⋆⋆
1 Observatório Nacional, Rua José Cristino 77, 20921-400 Rio de Janeiro, Brazil
e-mail:
etelles@on.br
2 Astronomy Department, University of Virginia, PO Box 400325, Charlottesville VA 22904, USA
3 Institut d’Astrophysique, 98 bis Boulevard Arago, 75014 Paris, France
e-mail:
txt@virginia.edu
4 Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany
5 Main Astronomical Observatory, Ukrainian National Academy of Sciences, Zabolotnoho 27, 03680 Kyiv, Ukraine
e-mail:
izotov@mao.kiev.ua
6 Gemini Observatory/AURA, Southern Operations Center, 603 Casilla, La Serena, Chile
e-mail:
rcarrasco@gemini.edu
Received: 22 March 2012
Accepted: 25 October 2013
Aims. We present an integral field spectroscopic study with the Gemini Multi-Object Spectrograph (GMOS) of the unusual blue compact dwarf (BCD) galaxy Mrk 996.
Methods. We show through velocity and dispersion maps, emission-line intensity and ratio maps, and by a new technique of electron density limit imaging that the ionization properties of different regions in Mrk 996 are correlated with their kinematic properties.
Results. From the maps, we can spatially distinguish a very dense high-ionization zone with broad lines in the nuclear region, and a less dense low-ionization zone with narrow lines in the circumnuclear region. Four kinematically distinct systems of lines are identified in the integrated spectrum of Mrk 996, suggesting stellar wind outflows from a population of Wolf-Rayet (WR) stars in the nuclear region, superposed on an underlying rotation pattern. From the intensities of the blue and red bumps, we derive a population of ~473 late nitrogen (WNL) stars and ~98 early carbon (WCE) stars in the nucleus of Mrk 996, resulting in a high N(WR)/N(O+WR) of 0.19. We derive, for the outer narrow-line region, an oxygen abundance 12 + log (O/H) = 7.94 ± 0.30 (~0.2 Z⊙) by using the direct Te method derived from the detected narrow [O iii]λ4363 line. The nucleus of Mrk 996 is, however, nitrogen-enhanced by a factor of ~20, in agreement with previous CLOUDY modeling. This nitrogen enhancement is probably due to nitrogen-enriched WR ejecta, but also to enhanced nitrogen line emission in a high-density environment. Although we have made use here of two new methods – principal component analysis (PCA) tomography and a method for mapping low- and high-density clouds – to analyze our data, new methodology is needed to further exploit the wealth of information provided by integral field spectroscopy.
Key words: galaxies: individual: Mrk 996 / galaxies: kinematics and dynamics / galaxies: star formation / galaxies: ISM / galaxies: abundances
Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência e Tecnologia (Brazil), and SECYT (Argentina).
Reduced and calibrated data cubes are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/561/A64
© ESO, 2014
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.