Issue |
A&A
Volume 559, November 2013
|
|
---|---|---|
Article Number | A62 | |
Number of page(s) | 8 | |
Section | Planets and planetary systems | |
DOI | https://doi.org/10.1051/0004-6361/201322259 | |
Published online | 14 November 2013 |
Growth efficiency of dust aggregates through collisions with high mass ratios⋆
1
Planetary Exploration Research Center, Chiba Institute of
Technology,
2-17-1 Tsudanuma, Narashino,
275-0016
Chiba
Japan
e-mail:
wada@perc.it-chiba.ac.jp
2
Institute of Low Temperature Science, Hokkaido University,
060-0819
Sapporo,
Japan
3
Department of Earth and Planetary Sciences, Tokyo Institute of
Technology, Meguro-ku,
152-8511
Tokyo,
Japan
4
Department of Physics, Nagoya University,
Nagoya, 464-8602
Aichi,
Japan
5
Nagano City Museum, Hachimanpara Historical Park Ojimada-machi,
381-2212 Nagano,
Japan
6
Graduate School of Science, Kobe University,
c/o CPS (Center for Planetary
Science), Chuo-ku Minatojima Minamimachi 7-1-48, 650-0047
Kobe,
Japan
7
CPS (Center for Planetary Science), Kobe University,
Chuo-ku Minatojima Minamimachi
7-1-48, 650-0047
Kobe,
Japan
Received:
11
July
2013
Accepted:
5
September
2013
Context. Collisional growth of dust aggregates is an essential process in forming planetesimals in protoplanetary disks, but disruption through high-velocity collisions (disruption barrier) could prohibit the dust growth. Mass transfer through very different-sized collisions has been suggested as a way to circumvent the disruption barrier.
Aims. We examine how the collisional growth efficiency of dust aggregates with different impact parameters depends on the size and the mass ratio of colliding aggregates.
Methods. We used an N-body code to numerically simulate the collisions of different-sized aggregates.
Results. Our results show that high values for the impact parameter are important and that the growth efficiency averaged over the impact parameter does not depend on the aggregate size, although the growth efficiency for nearly head-on collisions increases with size. We also find that the averaged growth efficiency tends to increase with increasing mass ratio of colliding aggregates. However, the critical collision velocity, above which the growth efficiency becomes negative, does not strongly depend on the mass ratio. These results indicate that icy dust can grow through high-velocity offset collisions at several tens of m s-1, the maximum collision velocity experienced in protoplanetary disks, whereas it is still difficult for silicate dust to grow in protoplanetary disks.
Key words: planets and satellites: formation / protoplanetary disks / methods: numerical
A complete set of our numerical results is available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/559/A62
© ESO, 2013
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.