Issue |
A&A
Volume 559, November 2013
|
|
---|---|---|
Article Number | A60 | |
Number of page(s) | 5 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361/201322102 | |
Published online | 14 November 2013 |
Scattering from dust in molecular clouds: Constraining the dust grain size distribution through near-infrared cloudshine and infrared coreshine
1
UJF – Grenoble 1/CNRS – INSU, Institut de Planétologie et d’Astrophysique
de Grenoble (IPAG), UMR 5274
38041
Grenoble
France
e-mail:
morten.andersen@obs.ujf-grenoble.fr
2
LERMA, UMR 8112 du CNRS, Observatoire de Paris, 61, Av. de
l’Observatoire, 75014
Paris,
France
3
Infrared Processing and Analysis Center, California Institute of
Technology, Pasadena
CA
91125,
USA
Received: 18 June 2013
Accepted: 14 October 2013
Context. The largest grains (0.5−1 μm) in the interstellar size distribution are efficient in scattering near- and mid-infrared radiation. These wavelengths are therefore particularly well suited to probe the still uncertain high-end of the size distribution.
Aims. We investigate the change in appearance of a typical low-mass molecular core from the Ks (2.2 μm) band to the Spitzer IRAC 3.6 and 8 micron bands, and compare with model calculations, which include variations of the grain size distribution.
Methods. We combine Spitzer IRAC and ground-based near-infrared observations to characterize the scattered light observed at the near- and mid-infrared wavelengths from the core L260. Using a spherical symmetric model core, we perform radiative transfer calculations to study the impact of various dust size distributions on the intensity profiles across the core.
Results. The observed scattered light patterns in the Ks and 3.6 μm bands are found to be similar. By comparison with radiative transfer models the two profiles place constraints on the relative abundance of small and large (more than 0.25 μm) dust grains. The scattered light profiles are found to be inconsistent with an interstellar silicate grain distribution extending only to 0.25 μm and large grains are needed to reach the observed fluxes and the flux ratios. The shape of the Ks band surface brightness profile limits the largest grains to 1−1.5 μm.
Conclusions. In addition to observing coreshine in the Spitzer IRAC channels, the combination with ground-based near-infrared observations are suited to constrain the properties of large grains in cores.
Key words: dust, extinction / ISM: clouds / stars: formation / scattering
© ESO, 2013
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.