Issue |
A&A
Volume 559, November 2013
|
|
---|---|---|
Article Number | A123 | |
Number of page(s) | 10 | |
Section | Astrophysical processes | |
DOI | https://doi.org/10.1051/0004-6361/201322083 | |
Published online | 26 November 2013 |
Preplanetary scavengers: Growing tall in dust collisions
Faculty of physics, University of Duisburg-Essen, Lotharstr. 1 47057 Duisburg Germany
e-mail:
thorsten.meisner@uni-due.de
Received: 14 June 2013
Accepted: 14 October 2013
Dust collisions in protoplanetary disks are one means to grow planetesimals, but the destructive or constructive nature of high speed collisions is still unsettled. In laboratory experiments, we study the self-consistent evolution of a target upon continuous impacts of submm dust aggregates at collision velocities of up to 71 m/s. Earlier studies analyzed individual collisions, which were more speculative for high velocities and low projectile masses. Here, we confirm earlier findings that high speed collisions result in mass gain of the target. We also quantify the accretion efficiency for the used SiO2 (quartz) dust sample. For two different average masses of dust aggregates (0.29 μg and 2.67 μg) accretion efficiencies are decreasing with velocity from 58% to 18% and from 25% to 7% at 27 m/s to 71 m/s, respectively. The accretion efficiency decreases approximately as logarithmic with impact energy. At the impact velocity of 49 m/s the target acquires a volume filling factor of 38%. These data extend earlier work that pointed to the filling factor leveling off at 8 m/s to a value of 33%. Our results imply that high speed collisions are an important mode of particle evolution. It especially allows existing large bodies to grow further by scavenging smaller aggregates with high efficiency.
Key words: methods: laboratory / protoplanetary disks / planets and satellites: formation
© ESO, 2013
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.