Issue |
A&A
Volume 559, November 2013
|
|
---|---|---|
Article Number | A97 | |
Number of page(s) | 10 | |
Section | Stellar atmospheres | |
DOI | https://doi.org/10.1051/0004-6361/201321695 | |
Published online | 20 November 2013 |
Multiperiodicity, modulations and flip-flops in variable star light curves
II. Analysis of II Pegasus photometry during 1979–2010⋆
1
Department of Physics, PO Box 64, 00014 University of Helsinki,
Finland
e-mail:
marjaana.lindborg@helsinki.fi
2
Aalto University, Department of Information and Computer
Science, PO Box
15400, 00076
Aalto,
Finland
3
Tartu Observatory, 61602
Tõravere,
Estonia
4
Finnish Centre for Astronomy with ESO (FINCA), University of
Turku, Väisäläntie
20, 21500
Piikkiö,
Finland
5
Center of Excellence in Information Systems, Tennessee State
University, 3500 John A. Merritt
Blvd., Box 9501, Nashville, TN
37209,
USA
6
Leibniz-Institute for Astrophysics Potsdam,
An der Sternwarte
16, 14482
Potsdam,
Germany
Received:
14
April
2013
Accepted:
12
September
2013
Aims. According to previously published Doppler images of the magnetically active primary giant component of the RS CVn binary II Peg, the surface of the star was dominated by one single active longitude that was clearly drifting in the rotational frame of the binary system during 1994-2002; later imaging for 2004–2010, however, showed decreased and chaotic spot activity, with no signs of the drift pattern. Here we set out to investigate from a more extensive photometric dataset whether this drift is a persistent phenomenon, in which case it could be caused either by an azimuthal dynamo wave or be an indication that the binary system’s orbital synchronization is still incomplete. On a differentially rotating stellar surface, spot structures preferentially on a certain latitude band could also cause such a drift, the disruption of which could arise from the change of the preferred spot latitude.
Methods. We analyzed the datasets using the carrier fit (CF) method, which is especially suitable for analyzing time series in which a fast clocking frequency (such as the rotation of the star) is modulated with a slower process (such as the stellar activity cycle).
Results. We combined all collected photometric data into one single data set and analyzed it with the CF method. We confirm the previously published results that the spot activity has been dominated by one primary spotted region almost through the entire data set and also confirm a persistent, nearly linear drift. Disruptions of the linear trend and complicated phase behavior are also seen, but the period analysis reveals a rather stable periodicity with Pspot = 671054 ± 000005. After removing the linear trend from the data, we identified several abrupt phase jumps, three of which are analyzed in more detail with the CF method. These phase jumps closely resemble what is called a flip-flop event, but the new spot configurations do not persist for longer than a few months in most cases.
Conclusions. There is some evidence that the regular drift without phase jumps is related to the high state, while the complex phase behavior and disrupted drift pattern are related to the low state of magnetic activity. The most natural explanation of the drift is weak anti-solar (pole rotating faster than the equator) differential rotation with a coefficient k ≈ 0.002 combined with the preferred latitude of the spot structure.
Key words: stars: activity / techniques: photometric / starspots / stars: imaging
The full predicted light curve over the whole data span (Table 3) is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/559/A97
© ESO, 2013
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.