Issue |
A&A
Volume 558, October 2013
|
|
---|---|---|
Article Number | A50 | |
Number of page(s) | 5 | |
Section | Stellar structure and evolution | |
DOI | https://doi.org/10.1051/0004-6361/201322231 | |
Published online | 03 October 2013 |
Research Note
Stellar core collapse with hadron-quark phase transition
1
Department of PhysicsFaculty of Science & Technology, Tokyo
University of Science,
2641 Yamazaki, Noda, 278-8510
Chiba,
Japan
e-mail: nakazato@rs.tus.ac.jp
2
Numazu College of Technology, Ooka 3600, Numazu, 410-8501
Shizuoka,
Japan
3
Department of Physics, Faculty of Science & Engineering,
Waseda University, 3-4-1 Okubo,
Shinjuku, 169-8555
Tokyo,
Japan
4
Advanced Research Institute for Science & Engineering,
Waseda University, 3-4-1 Okubo,
Shinjuku, 169-8555
Tokyo,
Japan
Received: 9 July 2013
Accepted: 7 September 2013
Context. Hadronic matter undergoes a deconfinement transition to quark matter at high temperature and/or high density. It would be realized in collapsing cores of massive stars.
Aims. In the framework of the MIT bag model, the ambiguities of the interaction are encapsulated in the bag constant. Some progenitor stars that invoke the core collapses explode as supernovae, and other ones become black holes. The fates of core collapses are investigated for various cases.
Methods. Equations of state including the hadron-quark phase transition are constructed for the cases of the bag constant B = 90, 150, and 250 MeV fm-3. To describe the mixed phase, the Gibbs condition is used. Adopting the equations of state with different bag constants, the core collapse simulations are performed for the progenitor models with 15 and 40 M⊙.
Results. If the bag constant is small, for example B = 90 MeV fm-3, the interval between the bounce and black hole formation is shortened drastically for the model with 40 M⊙, and the second bounce revives the shock wave leading to explosion for the model with 15 M⊙.
Key words: black hole physics / dense matter / equation of state / hydrodynamics / methods: numerical / supernovae: general
© ESO, 2013
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.