Issue |
A&A
Volume 558, October 2013
|
|
---|---|---|
Article Number | A120 | |
Number of page(s) | 10 | |
Section | Stellar atmospheres | |
DOI | https://doi.org/10.1051/0004-6361/201220041 | |
Published online | 15 October 2013 |
Paschen-Back effect in the CrH molecule and its application for magnetic field measurements on stars, brown dwarfs, and hot exoplanets
1
Kiepenheuer – Institut für Sonnenphysik,
Schöneckstr. 6,
79104
Freiburg,
Germany
e-mail: oleksii.kuzmychov; sveta]@kis.uni-freiburg.de
2
NASA Astrobiology Institute, University of Hawaii,
2680 Woodlawn Dr.,
Honolulu, HI, USA
Received:
17
July
2012
Accepted:
10
September
2013
Aims. We investigated the Paschen-Back effect in the (0,0) band of the A6Σ+ – X6Σ+ system of the CrH molecule, and we examined its potential for estimating magnetic fields on stars and substellar objects, such as brown dwarfs and hot exoplanets.
Methods. We carried out quantum mechanical calculations to obtain the energy level structure of the electronic-vibrational-rotational states considered both in the absence and in the presence of a magnetic field. Level mixing due to magnetic field perturbation (the Paschen-Back effect) was consistently taken into account. Then, we calculated frequencies and strengths of transitions between magnetic sublevels. Employing these results and solving numerically a set of the radiative transfer equations for polarized radiation, we calculated Stokes parameters for both the individual lines and the (0,0) band depending on the strength and orientation of the magnetic field.
Results. We demonstrate that magnetic splitting of the individual CrH lines shows a significant asymmetry due to the Paschen-Back effect already at 1 G field. This leads to a considerable signal in both circular and linear polarization, up to 30% at the magnetic field strength of ≥3 kG in early L dwarfs. The polarization does not cancel out completely even at very low spectral resolution and is seen as broad-band polarization of a few percent. Since the line asymmetry depends only on the magnetic field strength and not on the filling factor, CrH lines provide a very sensitive tool for direct measurement of the stellar magnetic fields on faint cool objects, such as brown dwarfs and hot Jupiters, observed with low spectral resolution.
Key words: brown dwarfs / stars: magnetic field / stars: atmospheres / polarization / radiative transfer
© ESO, 2013
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.