Issue |
A&A
Volume 557, September 2013
|
|
---|---|---|
Article Number | A127 | |
Number of page(s) | 6 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361/201321741 | |
Published online | 20 September 2013 |
What caused the GeV flare of PSR B1259-63?
1 UJF-Grenoble 1/CNRS-INSU, Institut de Planétologie et d’Astrophysique de Grenoble (IPAG) UMR 5274, 38041 Grenoble, France
e-mail: Guillaume.Dubus@obs.ujf-grenoble.fr
2 Center for Integrated Plasma Studies, Physics Department, University of Colorado, UCB 390, Boulder, CO 80309-03960, USA
Received: 19 April 2013
Accepted: 20 August 2013
Context. PSR B1259-63 is a gamma-ray binary system composed of a high spindown pulsar and a massive star. Non-thermal emission up to TeV energies is observed near periastron passage, attributed to emission from high energy e+e− pairs accelerated at the shock with the circumstellar material from the companion star, resulting in a small-scale pulsar wind nebula. Weak gamma-ray emission was detected by the Fermi/LAT at the last periastron passage, unexpectedly followed 30 days later by a strong flare, limited to the GeV band, during which the luminosity nearly reached the spindown power of the pulsar. The origin of this GeV flare remains mysterious.
Aims. We investigate whether the flare could have been caused by pairs, located in the vicinity of the pulsar, up-scattering X-ray photons from the surrounding pulsar wind nebula rather than UV stellar photons, as usually assumed. Such a model is suggested by the geometry of the interaction region at the time of the flare.
Methods. We compute the gamma-ray lightcurve for this scenario, based on a simplified description of the interaction region, and compare it to the observations.
Results. The GeV lightcurve peaks well after periastron with this geometry. The pairs are inferred to have a Lorentz factor ≈500. They also produce an MeV flare with a luminosity ≈ 1034 erg s-1 prior to periastron passage. A significant drawback is the very high energy density of target photons required for efficient GeV emission.
Conclusions. We propose to associate the GeV-emitting pairs with the Maxwellian expected at shock locations corresponding to high pulsar latitudes, while the rest of the non-thermal emission arises from pairs accelerated in the equatorial region of the pulsar wind termination shock.
Key words: pulsars: general / stars: winds, outflows / radiation mechanisms: non-thermal / gamma rays: stars
© ESO, 2013
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.