Issue |
A&A
Volume 556, August 2013
|
|
---|---|---|
Article Number | A122 | |
Number of page(s) | 7 | |
Section | Atomic, molecular, and nuclear data | |
DOI | https://doi.org/10.1051/0004-6361/201321533 | |
Published online | 07 August 2013 |
Wavelength-dependent UV photodesorption of pure N2 and O2 ices
1
Sackler Laboratory for Astrophysics, Leiden Observatory, Leiden
University,
PO Box 9513
2300 RA
Leiden
The Netherlands
e-mail:
fayolle@strw.leidenuniv.nl
2
Laboratoire de Physique Moléculaire pour l’Atmosphère et
l’Astrophysique, UPMC Univ. Paris 6, CNRS-UMR7092, 4 place jussieu, 75252
Paris,
France
3
Laboratoire de Chimie Physique, UMR 8000 CNRS-Université
Paris-Sud, 91405
Orsay,
France
4
Departments of Chemistry and Astronomy, University of
Virginia, Charlottesville, VA
22904,
USA
Received: 21 March 2013
Accepted: 13 June 2013
Context. Ultraviolet photodesorption of molecules from icy interstellar grains can explain observations of cold gas in regions where thermal desorption is negligible. This non-thermal desorption mechanism should be especially important where UV fluxes are high.
Aims. N2 and O2 are expected to play key roles in astrochemical reaction networks, both in the solid state and in the gas phase. Measurements of the wavelength-dependent photodesorption rates of these two infrared-inactive molecules provide astronomical and physical-chemical insights into the conditions required for their photodesorption.
Methods. Tunable radiation from the DESIRS beamline at the SOLEIL synchrotron in the astrophysically relevant 7 to 13.6 eV range is used to irradiate pure N2 and O2 thin ice films. Photodesorption of molecules is monitored through quadrupole mass spectrometry. Absolute rates are calculated by using the well-calibrated CO photodesorption rates. Strategic N2 and O2 isotopolog mixtures are used to investigate the importance of dissociation upon irradiation.
Results. N2 photodesorption mainly occurs through excitation of the b1Πu state and subsequent desorption of surface molecules. The observed vibronic structure in the N2 photodesorption spectrum, together with the absence of N3 formation, supports that the photodesorption mechanism of N2 is similar to CO, i.e., an indirect DIET (Desorption Induced by Electronic Transition) process without dissociation of the desorbing molecule. In contrast, O2 photodesorption in the 7−13.6 eV range occurs through dissociation and presents no vibrational structure.
Conclusions. Photodesorption rates of N2 and O2 integrated over the far-UV field from various star-forming environments are lower than for CO. Rates vary between 10-3 and 10-2 photodesorbed molecules per incoming photon.
Key words: astrochemistry / ISM: abundances / ISM: molecules / molecular data / molecular processes
© ESO, 2013
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.