Issue |
A&A
Volume 555, July 2013
|
|
---|---|---|
Article Number | A130 | |
Number of page(s) | 11 | |
Section | Numerical methods and codes | |
DOI | https://doi.org/10.1051/0004-6361/201321212 | |
Published online | 12 July 2013 |
Transfer of polarized line radiation in 2D cylindrical geometry
1
UMR 7293 J.L. Lagrange Laboratory, Université de Nice Sophia Antipolis,
CNRS, Observatoire de la Côte d’Azur,
Campus Valrose,
06108
Nice,
France
2
Astronomical observatory Belgrade, Volgina 7,
11060
Belgrade,
Serbia
e-mail: milic@aob.rs
Received:
31
January
2013
Accepted:
12
April
2013
Aims. This paper deals with multidimensional NLTE polarized radiative transfer in the case of two level atom in the absence of lower level polarization. We aim to develop an efficient and robust method for 2D cylindrical geometry and to apply it to various axi-symmetrical astrophysical objects such as rings, disks, rotating stars, and solar prominences.
Methods. We review the methods of short characteristics and Jacobi iteration applied to axisymmetric geometry. Then we demonstrate how to use a reduced basis for polarized intensity and polarized source function to self-consistently solve the coupled equations of radiative transfer and statistical equilibrium for linearly polarized radiation. We discuss some peculiarities that do not appear in Cartesian geometry, such as angular interpolation in performing the formal solution. We also show how to account for two different types of illuminating radiation.
Results. The proposed method is tested on homogeneous, self-emitting cylinders to compare the results with those in 1D geometries. We demonstrate a possible astrophysical application on a very simple model of circumstellar ring illuminated by a host star where we show that such a disk can introduce a significant amount of scattering polarization in the system.
Conclusions. This method is found to converge properly and, apparently, to allow for substantial time saving compared to 3D Cartesian geometry. We also discuss the advantages and disadvantages of this approach in multidimensional radiative transfer modeling.
Key words: methods: numerical / line: formation / radiative transfer / polarization
© ESO, 2013
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.