Issue |
A&A
Volume 555, July 2013
|
|
---|---|---|
Article Number | A123 | |
Number of page(s) | 6 | |
Section | The Sun | |
DOI | https://doi.org/10.1051/0004-6361/201321185 | |
Published online | 11 July 2013 |
Observationally driven 3D magnetohydrodynamics model of the solar corona above an active region⋆
1
Max-Planck-Institut für Sonnensystemforschung,
37191
Katlenburg-Lindau,
Germany
e-mail:
Bourdin@MPS.mpg.de
2
Institut für Astrophysik, Universität Göttingen,
Friedrich-Hund-Platz
1, 37077
Göttingen,
Germany
Received: 29 January 2013
Accepted: 9 May 2013
Context.
Aims. The goal is to employ a 3D magnetohydrodynamics (MHD) model including spectral synthesis to model the corona in an observed solar active region. This will allow us to judge the merits of the coronal heating mechanism built into the 3D model.
Methods. Photospheric observations of the magnetic field and horizontal velocities in an active region are used to drive our coronal simulation from the bottom. The currents induced by this heat the corona through Ohmic dissipation. Heat conduction redistributes the energy that is lost in the end through optically thin radiation. Based on the MHD model, we synthesized profiles of coronal emission lines which can be directly compared to actual coronal observations of the very same active region.
Results. In the synthesized model data we find hot coronal loops which host siphon flows or which expand and lose mass through draining. These synthesized loops are at the same location as and show similar dynamics in terms of Doppler shifts to the observed structures. This match is shown through a comparison with Hinode data as well as with 3D stereoscopic reconstructions of data from STEREO.
Conclusions. The considerable match to the actual observations shows that the field-line braiding mechanism leading to the energy input in our corona provides the proper distribution of heat input in space and time. From this we conclude that in an active region the field-line braiding is the dominant heating process, at least at the spatial scales available to current observations.
Key words: Sun: corona / magnetohydrodynamics (MHD) / methods: numerical / Sun: UV radiation
Parameters and simulation log-files are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/555/A123
© ESO, 2013
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.