Issue |
A&A
Volume 555, July 2013
|
|
---|---|---|
Article Number | A140 | |
Number of page(s) | 10 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361/201219103 | |
Published online | 15 July 2013 |
Determination of the far-infrared dust opacity in a prestellar core⋆
1
Department of Physics and AstronomyThe Open University,
Walton Hall Milton Keynes,
MK7 6AA,
UK
e-mail: aleksi.suutarinen@gmail.com
2
Department of Physics, University of Helsinki,
PO Box 64, 00014
Helsinki,
Finland
3
Finnish Centre for Astronomy with ESO, University of
Turku, Väisäläntie
20, 21500
Piikkiö,
Finland
4
Laboratoire AIM, CEA/DSM-CNRS-Université Paris Diderot,
IRFU/Service d’Astrophysique, CEA Saclay, Orme des Merisiers, 91191
Gif-sur-Yvette,
France
5
Jeremiah Horrocks Institute, University of Central
Lancashire, Preston
PR1 2HE,
UK
6
Institut d’Astrophysique Spatiale, UMR 8617, CNRS/Université
Paris-Sud 11, 91405
Orsay,
France
7
RAL Space, STFC Rutherford Appleton Laboratory,
Chilton Didcot, Oxfordshire
OX11 0QX,
UK
Received:
23
February
2012
Accepted:
11
June
2013
Context. Mass estimates of interstellar clouds from far-infrared and submillimetre mappings depend on the assumed dust absorption cross-section for radiation at those wavelengths.
Aims. The aim is to determine the far-IR dust absorption cross-section in a starless, dense core located in Corona Australis. The value is needed for determining of the core mass and other physical properties. It can also have a bearing on the evolutionary stage of the core.
Methods. We correlated near-infrared stellar H − Ks colour excesses of background stars from NTT/SOFI with the far-IR optical depth map, τFIR, derived from Herschel 160, 250, 350, and 500 μm data. The Herschel maps were also used to construct a model for the cloud to examine the effect of temperature gradients on the estimated optical depths and dust absorption cross-sections.
Results. A linear correlation is seen between the colour H − Ks and τFIR up to high extinctions (AV ~ 25). The correlation translates to the average extinction ratio A250 μm/AJ = 0.0014 ± 0.0002, assuming a standard near-infrared extinction law and a dust emissivity index β = 2. Using an empirical NH/AJ ratio we obtain an average absorption cross-section per H nucleus of σH250 μm = (1.8 ± 0.3) × 10-25 cm H-atom, corresponding to a cross-section per unit mass of gas κ250 μmg = 0.08 ± 0.01 cm g. The cloud model, however, suggests that owing to the bias caused by temperature changes along the line-of-sight, these values underestimate the true cross-sections by up to 40% near the centre of the core. Assuming that the model describes the effect of the temperature variation on τFIR correctly, we find that the relationship between H − Ks and τFIR agrees with the recently determined relationship between σH and NH in Orion A.
Conclusions. The derived far-IR cross-section agrees with previous determinations in molecular clouds with moderate column densities, and is not particularly large compared with some other cold cores. We suggest that this is connected to the core not being very dense (the central density is likely to be ~105 cm), and judging from previous molecular line data, it appears to be at an early stage of chemical evolution.
Key words: ISM: clouds / dust, extinction
© ESO, 2013
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.