Issue |
A&A
Volume 553, May 2013
|
|
---|---|---|
Article Number | A16 | |
Number of page(s) | 32 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361/201220948 | |
Published online | 23 April 2013 |
Chemical enrichment and physical conditions in I Zw 18⋆
1
Laboratoire AIM, CEA/DSM-CNRS-Université Paris Diderot DAPNIA/Service
d’Astrophysique, Bât. 709, CEA-Saclay,
91191
Gif-sur-Yvette Cedex,
France
e-mail:
vianney.lebouteiller@cea.fr
2
Laboratory of Astronomy and Solar Physics,
NASA Goddard Space Flight
Center, Greenbelt,
MD
20771,
USA
3
Department of Astronomy and Steward Observatory, University of
Arizona, Tucson,
AZ
85721,
USA
4
Institut d’Astrophysique, Paris, 98bis boulevard Arago, 75014
Paris,
France
Received:
18
December
2012
Accepted:
4
February
2013
Context. Low-metallicity star-forming dwarf galaxies are prime targets to understand the chemical enrichment of the interstellar medium. The H i region contains the bulk of the mass in blue compact dwarfs, and it provides important constraints on the dispersal and mixing of heavy elements released by successive star-formation episodes. The metallicity of the H i region is also a critical parameter to investigate the future star-formation history, as metals provide most of the gas cooling that will facilitate and sustain star formation.
Aims. Our primary objective is to study the enrichment of the H i region and the interplay between star-formation history and metallicity evolution. Our secondary objective is to constrain the spatial- and time-scales over which the H i and H ii regions are enriched, and the mass range of stars responsible for the heavy element production. Finally, we aim to examine the gas heating and cooling mechanisms in the H i region.
Methods. We observed the most metal-poor star-forming galaxy in the Local Universe, I Zw 18, with the Cosmic Origin Spectrograph onboard Hubble. The abundances in the neutral gas are derived from far-ultraviolet absorption-lines (H i, C ii, C ii*, N i, O i, ...) and are compared to the abundances in the H ii region. Models are constructed to calculate the ionization structure and the thermal processes. We investigate the gas cooling in the H i region through physical diagnostics drawn from the fine-structure level of C+.
Results. We find that H i region abundances are lower by a factor of ~2 as compared to the H ii region. There is no differential depletion on dust between the H i and H ii region. Using sulfur as a metallicity tracer, we calculate a metallicity of 1/46 Z⊙ (vs. 1/31 Z⊙ in the H ii region). From the study of the C/O, [O/Fe], and N/O abundance ratios, we propose that C, N, O, and Fe are mainly produced in massive stars. We argue that the H i envelope may contain pockets of pristine gas with a metallicity essentially null. Finally, we derive the physical conditions in the H i region by investigating the C ii* absorption line. The cooling rate derived from C ii* is consistent with collisions with H0 atoms in the diffuse neutral gas. We calculate the star-formation rate from the C ii* cooling rate assuming that photoelectric effect on dust is the dominant gas heating mechanism. Our determination is in good agreement with the values in the literature if we assume a low dust-to-gas ratio (~2000 times lower than the Milky Way value).
Key words: galaxies: abundances / HII regions / galaxies: individual: I Zw 18 / galaxies: ISM / galaxies: star formation / galaxies: evolution
Appendix A is available in electronic form at http://www.aanda.org
© ESO, 2013
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.