Issue |
A&A
Volume 553, May 2013
|
|
---|---|---|
Article Number | A70 | |
Number of page(s) | 11 | |
Section | Numerical methods and codes | |
DOI | https://doi.org/10.1051/0004-6361/201219588 | |
Published online | 06 May 2013 |
Non-local radiative transfer in strongly inverted masers
Laboratory of Molecular AstrophysicsDepartment of Astrophysics, Centro de Astrobiología (CSIC-INTA), Crta. Torrejón a Ajalvir km4. 28840 Torrejón de Ardoz, Madrid, Spain
e-mail: danielf@cab-inta.csic.es
Received: 12 May 2012
Accepted: 21 December 2012
Context. Maser transitions are commonly observed in media exhibiting a large range of densities and temperatures. They can be used to obtain information on the dynamics and physical conditions of the observed regions. To obtain reliable constraints on the physical conditions prevailing in the masing regions, it is necessary to model the excitation mechanisms of the energy levels of the observed molecules.
Aims. We present a numerical method that enables us to obtain self-consistent solutions for both the statistical equilibrium and radiative transfer equations.
Methods. Using the standard maser theory, the method of short characteristics (SC) is extended to obtain the solution of the integro-differential radiative transfer equation, appropriate to the case of intense masing lines.
Results. We have applied our method to the maser lines of the H2O molecule and we compare these results with the results obtained using a less accurate approach. In the regime of large maser opacities we find large differences in the intensity of the maser lines that could be as high as several orders of magnitude. The comparison between the two methods shows, however, that the effect on the thermal lines is modest. Finally, the effect introduced by rate coefficients on the prediction of H2O masing lines and opacities is discussed, making use of various sets of rate coefficients involving He, o–H2, and p–H2. We find that the masing nature of a line is not affected by the selected collisional rates; however, from one set to the other the modelled line opacities and intensities can vary by up to a factor ~2 and ~10 respectively.
Key words: line: formation / masers / molecular data / radiative transfer
© ESO, 2013
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.