Issue |
A&A
Volume 551, March 2013
|
|
---|---|---|
Article Number | A67 | |
Number of page(s) | 16 | |
Section | Planets and planetary systems | |
DOI | https://doi.org/10.1051/0004-6361/201220701 | |
Published online | 22 February 2013 |
Asteroids’ physical models from combined dense and sparse photometry and scaling of the YORP effect by the observed obliquity distribution ⋆
1 Astronomical Institute, Faculty of Mathematics and Physics, Charles University in Prague, V Holešovičkách 2, 18000 Prague, Czech Republic
e-mail: hanus.home@gmail.com
2 Astronomical Observatory Institute, Faculty of Physics, A. Mickiewicz University, Słoneczna 36, 60-286 Poznań, Poland
3 Palmer Divide Observatory, 17995 Bakers Farm Rd., Colorado Springs, CO 80908, USA
4 4438 Organ Mesa Loop, Las Cruces, NM 88011, USA
5 Goat Mountain Astronomical Research Station, 11355 Mount Johnson Court, Rancho Cucamonga, CA 91737, USA
6 Geneva Observatory, 1290 Sauverny, Switzerland
7 European Space Astronomy Centre, Spain, PO Box 78, 28691 Villanueva de la Cañada, Madrid, Spain
8 Astronomical Institute of the Academy of Sciences, Fričova 298, 25165 Ondřejov, Czech Republic
9 Observatoire de Bédoin, 47 rue Guillaume Puy, 84000 Avignon, France
10 Observatoire de Chinon, Mairie de Chinon, 37500 Chinon, France
11 Courbes de rotation d’astéroïdes et de comètes, CdR
12 Association T60, 14 avenue Édouard Belin, 31400 Toulouse, France
13 Harfleur, France
14 Observatoire des Engarouines, 84570 Mallemort-du-Comtat, France
15 Collonges Observatory, 90 allée des résidences, 74160 Collonges, France
16 Paris and Saint-Savinien, France
17 139 Antibes France
18 Via M. Rosa, 1, 00012 Colleverde di Guidonia, Rome, Italy
19 947 Saint-Sulpice, France
20 IMCCE – Paris Observatory – UMR 8028 CNRS, 77 Av. Denfert-Rochereau, 75014 Paris, France
21 A90 San Gervasi, Spain
22 l’Observatoire de Cabris, 408 chemin Saint Jean Pape, 06530 Cabris, France
23 929 Blackberry Observatory, USA
24 Plateau du Moulin à Vent, St-Michel l’Observatoire, France
25 J80 Saint-Hélène, France
26 B13 Tradate, Italy
27 138 Village-Neuf, France
28 TASS = The Amateur Sky Survey
29 Shed of Science Observatory, 5213 Washburn Ave. S, Minneapolis, MN 55410, USA
30 Association AstroQueyras, 05350 Saint-Véran, France
31 Association des Utilisateurs de Détecteurs Électroniques (AUDE), France
32 Observatoire du Bois de Bardon, 16110 Taponnat, France
33 Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, 2100 Copenhagen, Denmark
34 Nordic Optical Telescope, Apartado 474, 38700 Santa Cruz de La Palma, Santa Cruz de Tenerife, Spain
35 Hamanowa Astronomical Observatory, Hikarigaoka 4–34, Motomiya, Fukushima, Japan
36 Institute of Planetary Research, German Aerospace Center, Rutherfordstrasse 2, 12489, Berlin, Germany
37 Hunters Hill Observatory, 7 Mawalan Street, Ngunnawal ACT 2913, Australia
38 056 Skalnaté Pleso, Slovakia
39 A83 Jakokoski, Finland
40 Astrophysics Division, Institute of Physics, Jan Kochanowski University, Świętokrzyska 15, 25–406 Kielce, Poland
41 Université de Toulouse, UPS-OMP, IRAP, 31400 Toulouse, France
42 CNRS, IRAP, 14 avenue Édouard Belin, 31400 Toulouse, France
43 980 Antelope Drive West, Bennett, CO 80102, USA
44 LESIA-Observatoire de Paris, CNRS, UPMC Univ. Paris 06, Univ. Paris-Diderot, 5 place Jules Janssen, 92195 Meudon, France
45 Stazione Astronomica di Sozzago, 28060 Sozzago, Italy
46 Forte Software, Os. Jagiełły 28/28 60-694 Poznań, Poland
47 SUPA (Scottish Universities Physics Alliance), Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh, EH9 3HJ, UK
48 Club d’Astronomie Lyon Ampère, 37 rue Paul Cazeneuve, 69008 Lyon, France
49 174 Nyrölä, Finland
50 Observatorio Montcabre, C/Jaume Balmes 24, 08348 Cabrils, Barcelona, Spain
51 Observatori Astronómico de Mallorca, Camí de l’Observatori, s/n 07144 Costitx, Mallorca, Spain
52 Kingsgrove, NSW, Australia
53 Mt. Suhora Observatory, Pedagogical University, Podchorążych 2, 30-084, Cracow, Poland
54 University of Helsinki, Department of Physics, PO Box 64, 00014 Helsinki
55 Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
56 2 rue des Écoles, 34920 Le Crès, France
57 F.-X. Bagnoud Observatory, 3961 St.-Luc, Switzerland
58 Blauvac Observatory, 84570 St.-Estéve, France
59 Observatoire de la Côte d’Azur, BP 4229, 06304 Nice Cedex 4, France
60 Observatoire de Paris-Meudon, LESIA, 92190 Meudon, France
61 143 Gnosca, Switzerland
62 DeKalb Observatory, 2507 CR 60, Auburn, IN 46706, USA
63 181 Les Makes, la Réunion, France
64 CNRS-LKB-École Normale Supérieure – UMR 8552 – 24 rue Lhomond, 75005 Paris, France
65 ANS Collaboration, c/o Osservatorio Astronomico di Padova, Sede di Asiago, 36032 Asiago (VI), Italy
66 Institute of Astronomy, Karazin Kharkiv National University, Sums’ka 35, 61022 Kharkiv, Ukraine
67 Observatoire Francois-Xavier Bagnoud, 3961 St.-Luc, Switzerland
Received: 5 November 2012
Accepted: 15 January 2013
Context. The larger number of models of asteroid shapes and their rotational states derived by the lightcurve inversion give us better insight into both the nature of individual objects and the whole asteroid population. With a larger statistical sample we can study the physical properties of asteroid populations, such as main-belt asteroids or individual asteroid families, in more detail. Shape models can also be used in combination with other types of observational data (IR, adaptive optics images, stellar occultations), e.g., to determine sizes and thermal properties.
Aims. We use all available photometric data of asteroids to derive their physical models by the lightcurve inversion method and compare the observed pole latitude distributions of all asteroids with known convex shape models with the simulated pole latitude distributions.
Methods. We used classical dense photometric lightcurves from several sources (Uppsala Asteroid Photometric Catalogue, Palomar Transient Factory survey, and from individual observers) and sparse-in-time photometry from the U.S. Naval Observatory in Flagstaff, Catalina Sky Survey, and La Palma surveys (IAU codes 689, 703, 950) in the lightcurve inversion method to determine asteroid convex models and their rotational states. We also extended a simple dynamical model for the spin evolution of asteroids used in our previous paper.
Results. We present 119 new asteroid models derived from combined dense and sparse-in-time photometry. We discuss the reliability of asteroid shape models derived only from Catalina Sky Survey data (IAU code 703) and present 20 such models. By using different values for a scaling parameter cYORP (corresponds to the magnitude of the YORP momentum) in the dynamical model for the spin evolution and by comparing synthetic and observed pole-latitude distributions, we were able to constrain the typical values of the cYORP parameter as between 0.05 and 0.6.
Key words: minor planets, asteroids: general
Table 3 is available in electronic form at http://www.aanda.org
© ESO, 2013
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.